Journals →  Chernye Metally →  2019 →  #3 →  Back

Metallurgy and Automotive Industry
ArticleName Innovations in high-strength microalloyed steel used in automotive industry
ArticleAuthor M. Nagel, J. Driessen, St. Kovacz, O. Pudritz, A. Tomitz, H. Rackow, H. Denecke-Arnold
ArticleAuthorData

thyssenkrupp Hohenlimburg GmbH (Hagen, Germany):

M. Nagel, e-mail: maximilian.nagel@thyssenkrupp.com

J. Driessen

St. Kovacz

O. Pudritz

A. Tomitz
H. Rackow

H. Denecke-Arnold

Abstract

High-ductile HD-steels are distinguished by the best combination of high strength, deformability and weldability for the widespread use in the automotive industry. They are used by manufacturers of safety elements, from seat adjustment mechanisms and gas generator for airbags to undercarriage components such as axles and even transmission elements, friction discs and gear shift forks (Fig. 13). Bainitic HBS steels are used predominantly in the undercarriage elements, transverse suspension arms and welded axles, due to the high maximum hole expansion ratio in combination with excellent weldability and strength. Another example: bumpers and seat belt fittings.

keywords High-strength steel, bainitic steel, properties, strength, tests, cracks, toughness, hole expansion ratio, automotive industry
References

1. DIN EN 10149-1/2/3:2013-12, Hot rolled flat products made of high strength steels for cold forming - all parts.
2. DIN EN 1011-2:2001-05, Recommendations for welding of metallic materials - Part 2: Arc welding of ferritic steels.
3. AWS D1.1 Structural Welding Code (An American National Standard), 2010.
4. Ito, Y.; Bessyo, K.: Weldability Formula of High Strength Steels, Related to Heat-Affected Zone Cracking, Sumitomo Search 1 (1969) Nr. 5, S. 59/70.
5. Bailey, N: Factors Influencing Weldability, [in:] Weldability of Ferritic Steels, Abington Publishing, Cambridge, Großbritannien, 1994, ISBN 1 85573 092 8.
6. Wang, W: The Great Minds of Carbon Equivalent-Part lll: The Evolution of Carbon Equivalent Equation, EWI (Edison Welding Institute), 2016.
7. Devletian, J. H.: Carbon equivalent (Pcm) limits for thick carbon and low alloy steels, Report of U.S. Dept. of Navy Carderock Division, Naval Surface Warfare Center, 4. April 2000.
8. Intern. Inst. of Welding: Techn. Report IIW Doc. IX-535-67, 1967.
9. Uwer, D.; Hbhne, H.: Charakterisierung des Kaltrifiverhaltens von Stahlen beim Schweißen. Schweißen und Schneiden 43 (1991), Heft 4, S. 195/99.
10. SEP 1220 Testing and Documentation Guideline for the joinability of thin sheet of steel.
11. Mulder, J.; Vegter, H.; Aretz, H.; Keller, S.; van den Boogaard, A. H.: J. Mater. Process. Technol. 226 (2015), S. 169/87.
12. Doege, E.; Behrens, B.-A.: Handbuch der Umformtechnik, Springer Verlag, Hannover, 2010, S. 319 ff.
13. Kessler, L; Gerlach, J.: Proc. Int. Deep Drawing Research Group '06, 19-21. Juni 2006, Porto, Portugal, S. 113.
14. ISO 16630:2009-07, Metallic materials - Sheet and strip - Hole expansion test.
15. Denks, I.; Kluge, S.; Heidler, J.: Europ. Forschungsges. f. Blechverarbeitung, Tagungsband-Fachartikel Nr. 040_12 (2015), S. 115/30.
16. Westhauser, S.: Kantenrissempfindlichkeit - Bewertungsmethoden und werkstoff-seitige Lösungen, Automotive Engineering Congress, 9-10. Juni 2015, Niirnberg.
17. Gula, G.; Beier, T.; Keller, L, Europaische Forschungsgesellschaft fur Blechverar-beitung 2015, Tagungsband-Fachartikel Nr. 036_23, 303-322 (2015).
18. Feistle, M.; Golle, R.; Volk, W: Determining the influence of shear cutting parameters on the edge cracking susceptibility of highstrength-steels using the edge-fracture-tensile-test, 48. CIRP Conf. on Manufacturing Systems (CMS 2015).
19. Volk, W; Feistle, M.: Bestimmungder werkstoffspezifischen prozessbeeinflussenden Parameter und Optimierung der Prozessparameter für das Durchsetzen hochfester Stähle, Schlussbericht, 28. Okt. 2013, AIF-Vorhaben 17103 N.

Language of full-text russian
Full content Buy
Back