Journals →  Chernye Metally →  2019 →  #3 →  Back

Digital Technologies
ArticleName Digital technologies in ferrous metallurgy
ArticleAuthor M. Neuer, A. Ebel, J. Brandenburger, J. Polzer, A. Wolff, M. Loos, N. Holzknecht, H. Peters
ArticleAuthorData

VDEh Institute of Industrial Researches (Düsseldorf, Germany):

M. Neuer, Dr., Head of the Project, e-mail: m.neuer@bfi.de
A. Ebel, Dr., Head of the Project
J. Brandenburger, Head of the Project Group
J. Polzer, Dr., Head of Dept.
A. Wolff, Dr., Senior Expert
M. Loos, Scientific Researcher
N. Holzknecht, Head of Dept.
H. Peters, Dr., CEO

Abstract

Various methodological aspects and decision modules developed by the VDEh Institute for Industrial Research which show the benefits of digitization of the steel industry have been presented. Understanding the structure and framework conditions of interdepartmental production data, smart management of a big data array, semantic modeling of the technological chain and the use of agentbased processes for production, generating and simple management of digital twins. All the presented approaches have one important general thing: they are realized only if technological knowledge is introduced. Only when the expertise of the process coincides with the IT expertise, the added value can be achieved through digitalization (Fig. 4). In the iron and steel industry, an “intelligent” coil or a digital twin can provide decentralized self-optimization of production operations. To do this, for each individual operation stage, not only information about its actual condition is provided, but, above all, its production history. Semantic models of steel production have been tested and provide objects with artificial intelligence access to the resources requested by them.  Distributed decentralized concepts are possible with the help ofdigital twins, which make it possible to implement a simply traceable, product-oriented optimization of the upstream technological stage. The approaches described have been and remain the object of thorough study in the course of the implementation of the projects of the Institute for Production Research. There are simplified modules that allow to quickly and efficiently implement the above-described technologies in the steel industry.

keywords Digital technologies, digitalization, database, information, software, digital twin, semantic modeling
References

1. Bundesministerium für Bildung und Forschung: Zukunftsbild Industrie 4.0, Berlin, 2013.
2. Schlaepfer, R.; Koch, M.; Merkofer, P.: Industry 4.0 – Challenges and solutions for the digital transformation and use of exponential technologies, Deloitte, Zürich, Schweiz, 2014.
3. Geissbauer, R.; Schrauf, S.; Koch, V.; Kuge, S.: Industry 4.0 – Opportunities and Challenges of the Industrial Internet, PwC, Düsseldorf, 2014.
4. Linnenberg, T.; Wior, I.; Schreiber, S.; Fay, A.: A market-based multiagent system for decentralized power and grid control, Proc. ETFA 2011, Toulouse, Frankreich, 5. — 9. Sept. 2011, S. 1/8, DOI: 10.1109/ETFA.2011.6059126.
5. Ameri, F.; McArthur, C.: A multi-agent system for autonomous supply chain configuration, Int. J. Adv. Manuf. Tech. 66 (2013), S. 1097/112.
6. Neuer, M. J.; Ebel, A.; Wolff, A.; Marchiori, F.; Roeßiger, M.; Matskanis, N.; Mathis, G.: stahl u. eisen 135 (2015) Nr. 11, S. 195/99.
7. https://www.mongodb.com/de, abgerufen am 20. April 2017.
8. http://couchdb.apache.org, abgerufen am 20. April 2017.

Language of full-text russian
Full content Buy
Back