Journals →  Gornyi Zhurnal →  2019 →  #4 →  Back

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
ArticleName Gold in the Olimpiada Mine ore and tailings
DOI 10.17580/gzh.2019.04.12
ArticleAuthor Sazonov A. M., Zvyagina E. A., Silyanov S. A., Babenkov D. E.
ArticleAuthorData

Siberian Federal University, Krasnoyarsk, Russia:

A. M. Sazonov, Professor, Doctor of Geologo-Mineralogical Sciences, sazonov_am@mail.ru
E. A. Zvyagina, Professor, Candidate of Geologo-Mineralogical Sciences
S. A. Silyanov, Engineer

 

Tomsk State University, Tomsk, Russia:
D. E. Babenkov, Assistant

Abstract

Subsoil users take practical interest in tailings piles of gold mines. The composition the Olimpiada processing plant tailings was tested in order to determine feasibility of secondary gold recovery. Mineral associations of oxidized ore, primary ore and tailings are described. It is found that both ore and tailings have analogous qualitative composition of minerals. Supergene minerals of iron, arsenic, antimony and tungsten are widely spread over tailings ponds. Gold content is lower in tailings than in ore by an order of magnitude. Native gold is detected in the form of free particles in classes -0.07+0.045 and -0.045+0 mm after additional milling of tailings. Splintered grains of gold-bearing minerals—aurostibite and johnasonite—are also found in coarser size grades of tailings without pre-milling. As compared with ore, tailings contain mobile gold (water-soluble, adsorbed and ferri-form) of about 15–20%. It is recommended to carry out re-extraction of gold from tailings after pre-milling down to size grade -0.071 mm at the content up to 90%. It is possible that the precious metal accumulates in the water solution of the tailings ponds with time; for this reason, it is advised to undertake monitoring of gold content in the liquid phase of tailings ponds and to find efficient technologies of gold recovery. Images in Figs. 1 and 2 and mineral diagnostics accomplished in the mode of back-scattered electrons on the scanning electron microscope Hitachi S-3400N with the energy dispersion spectrometer Bruker XFlash 5010 by the Assistant–Operator S. S. Ilienok, Geoecology and Geochemistry Chair, Tomsk Polytechnic University.
The study was supported in the framework of the state contract with the Ministry of Education and Science of the Russian Federation, Project No. 5.2352.2017/RSN.

keywords Processing plant, tailings, gold forms, supergene minerals, native gold, gold-bearing minerals
References

1. Abdykirova G. Zh., Bekturganov N. S., Dyusenova S. B., Tanekeeva M. Sh., Sukurov B. M. A study into the feasibility of gold recovery from aged dump tailings of gold-recovery plants. Obogashchenie Rud. 2015. No. 3. pp. 46–50. DOI: 10.17580/or.2015.03.08
2. Dushin A. V., Yurak V. V. Authors’ approach to the Total Economic Value: Essentials, structure, evolution. Eurasian Mining. 2018. No. 1. pp. 11–15. DOI: 10.17580/em.2018.01.03
3. Nnaji J. C., Amako N. F. Heavy metals concentrations in wastewater, sedimentsand soils of Nassarawa-Kainji artisinal gold ore processing area, Nigeria. Journal of Chemical Society of Nigeria. 2016. Vol. 41, No. 1. pp. 58–65.
4. Kerolli-Mustafa M., Lajqi-Makolli V., Latifi L. Environmental Impact Assessment of Metallurgical Waste: Trepça case study in Kosovo. First Regional Conference on Environmental Impact Assessment. Zagreb : Croatian Association of Experts in Nature and Environmental Protection, 2014. pp. 292–300.
5. Harris S. L. Precious Metals Recovery from Low-Grade Resources. JOM. 1986. Vol. 38, Iss. 6. pp. 29–30.
6. Algebraistova N. K., Alekseeva E. A., Kolyago E. K. Mineralogy and processing of old tailings at Artem gold recovery plant. GIAB. 2000. No. 6. pp. 191–198.
7. Bogdanovich A. V., Vasilyev A. M., Shneerson Ya. M., Pleshkov M. A. Recovery of gold from old tails of copper-zinc pyrite ores. Obogashchenie Rud. 2013. No. 5. pp. 38–44.
8. Tselyuk I. N., Tselyuk D. I. Prospects of disposal of wastes of gold mining plants of Eastern Siberia. Izvestiya vuzov. Gornyy zhurnal. 2011. No. 7. pp. 31–37.
9. Meimanova Zh. S., Nogaeva K. A. Investigation of the flotation enrichment of stale tails PF «Solton-Sary». Nauka i novye tekhnologii. 2014. No. 2. pp. 15–16.
10. Tselyuk O. I., Tselyuk D. I. Heap leaching of gold for commercial utilization of old tailings of gold concentration plants in East Siberia. Izvestiya Sibirskogo otdeleniya RAEN. Geologiya, poiski i razvedka rudnykh mestorozhdeniy. 2013. No. 1(42). pp. 103–110.
11. Makarov V. A., Bragin V. I., Malykhin E. V. Mineralogical-geochemical features and recycling assessment of gold ore processing tailings at Olimpiadinkii mining and processing plant. Non-Ferrous Metals and Minerals : Book of papers of the IX International congress. Krasnoyarsk : Nauchno-innovatsionnyi tsentr, 2017. pp. 834–842.
12. Belyi A. V., Chernov D. V., Solopova N. V. Development of BIONORD® technology on Olimpiada deposit refractory arsenic-gold ores treatment in conditions of Extreme North. Hydrometallurgy. 2018. Vol. 179. pp. 188–191.
13. Sovmen V. K., Stragis Yu. M., Plekhanov A. A., Bibik S. M., Krovyakova L. P. et al. Geological structure of gold deposits and experience of geological supervision over reserves and resources of Polyus company in the Krasnoyarsk Territory. Krasnoyarsk, 2009. 208 p.
14. Sazonov A. M., Kirik S. D., Silyanov S. A., Bayukov O. A., Tishin P. A. Typomorphism of arsenopyrite from the Blagodatnoe and Olimpiada gold deposits (Yenisei Ridge). Mineralogiya. 2016. No. 3. pp. 53–70.
15. Antropova L. V. Occurrence forms of elements in metallic mineral scattering halos. Leningrda : Nedra, 1975. 144 p.
16. Antropova L. V., Shuraleva A. Z., Farfel L. F., Aizenberg F. M., Priemov G. A. Gold occurrence forms in rocks. Exploration Procedure and Equipment : Collected Papers. Leningrad, 1980. Iss. 136. pp. 5–21.
17. Cherepnin V. K., Bernatonis V. K. Secondary processes in sulphide and gold deposits. Tomsk : TPI, 1981. 90 p.
18. Piatak N. M., Seal R. R., Sanzolone R. F., Lamothe P. J., Brown Z. A. Preliminary Results of Sequential Extraction Experiments for Selenium on Mine Waste and Stream Sediments from Vermont, Maine, and New Zealand : Report. U.S. Geological Survey, 2006. Available at: https://pubs.usgs.gov/of/2006/1184/of2006–1184.pdf (accessed: 11.02.2019).
19. Álvarez-Valero A. M., Sáez R., Pérez-López R., Delgado J., Nieto J. M. Evaluation of heavy metal bio-availability from Almagrera pyrite-rich tailings dam (Iberian Pyrite Belt, SW Spain) based on a sequential extraction procedure. Journal of Geochemical Exploration. 2009. Vol. 102, Iss. 2. pp. 87–94.
20. Weifeng Liu, Xunbo Deng, Shuai Rao, Tianzu Yang, Lin Chen, Duchao Zhang. Selection on the Process of Enriching Gold by Smelting from Refractory Gold Ores. Characterization of Minerals, Metals, and Materials : Conference proceedings. Cham : Springer, 2017. pp. 481–488.
21. Torres E., Auleda M. A sequential extraction procedure for sediments affected by acid mine drainage. Journal of Geochemical Exploration. 2013. Vol. 128. pp. 35–41.
22. Fielding I. O. H., Johnson S. P., Meffre S., Zi J., Sheppard S., Large R. R., Rasmussen B. Linking gold mineralization to regional-scale drivers of mineral systems using in situ U–Pb geochronology and pyrite LA-ICP-MS element mapping. Geoscience Frontiers. 2019. Vol. 10. pp. 89–105.
23. Mikhailov A. G., Kharitonova M. Y., Vashlaev I. I., Sviridova M. L. Mobility of water-soluble nonferrous and precious metals in aged mineral processing waste. Journal of Mining Science. 2013. Vol. 49, Iss 3. pp. 514–520.

Language of full-text russian
Full content Buy
Back