References |
1. World Steel Association: World Steel in Figures 2017, Peking, China, 2017, https://www.worldsteel.org/media-centre/pressreleases/2017/world-steelin-fgures-2017.html [Zugriff am 10.07.2018]. 2. Santos, J.; Abel Henríques, A.: Proc. Eng. 114 (2015), S. 800/807. 3. Perepérez, B.: Diseño y ductilidad en las construcciones de hormigón armado. In: Eduardo Torroja, la vigencia de un legado, 1a ed., SUPUV, Ed. Valencia, 2002, S. 261/69. 4. Khalifa, H.; Megahed, G. M.; Hamouda, R. M. et al.: J. Mat. Proc. Techn. 230 (2016), S. 244/53. 5. American Iron and Steel Institute: Steel Works, Profile 2017, 2017. http://www.steel.org/~/media/Files/AISI/Reports/2017-AISI-Profile-Book.pdf. [Zugriff am: 11.07.2018]. 6. Martínez, D. I.; Niño, O.; Niño, E. et al.: Mechanical properties enhancement through thermal treatment and experimental design, Proc. 60th Ann. IIE Conf. and Exhib., Institute of Industrial Engineers, 2010, Cancun, Mexiko, Vol. 3, S. 1 877/82. 7. Bontcheva, N.; Petzov, G.: Comput. Mat. Sci. 34 (2005), No. 4, S. 377/88. 8. Niño, O.; Martínez, D. I.; Lizcano, C. et al.: Study of the Tempcore process for the production of high resistance reinforcing rods, Materials Science Forum, Vol. 537–538 (2007), S. 533/40. 9. Rehm, G.; Russwurm, D.: C.R.M. Metall. Reports 51 (1977), S. 3/16. 10. Simon, P.; Economopoulos, M.; Nilles, P.: Iron Steel Eng. 61 (1984) Nr. 3, S. 53/57. 11. Economopoulos, M., Respen, Y., Lessel, G. et al.: C.R.M. Metall. Reports, 45 (1975), S. 3/19. 12. Nikolaou, J.; Papadimitriou, G. D.: Int. J. Impact Eng. 31 (2005) Nr. 8, S. 1065/80. 13. Zheng, H.; Abel, A. A.: J. Mat. in Civil Eng. 11 (1999) Nr. 2, S. 158/65. 14. Riva, P., Franchi, A., Tabeni, D.: Welded TEMPCORE reinforcement behaviour for seismic applications. In: Materials and Structures, Vol. 34 (2001), Iss. 4, pp. 240–247. 15. Nikolau, J., Papadimitriou, G. D.: Construction Build. Mat. 18 (2004) Nr. 4, S. 243/54. 16. Dotreppe, J. C.: Materials Struct. 30 (1997) Nr. 7, S. 430/38. 17. Felicetti, R.; Gambarova, P. G.; Meda, A.: Construction Build. Mat. 23 (2009) Nr. 12, S. 3546/55. 18. Purcell, A.: Mathematical modelling of temperature evolution in the hot rolling of steel, McGill University, Kanada, 2000 (Diss.). 19. Lindemann, A.; Schmidt, J.: J. Mat. Proc. Tech. 169 (2005) Nr. 3, S. 466/75. 20. Nobari; A. H.; Serajzadeh, S.: Appl. Thermal Eng. 31 (2011) Nr. 4, S. 487/92. 21. Hollomon, J. H.; Jaff e, J. H.: Trans. Am. Inst. of Min. Met. Petrol. Engin. 162 (1945), S. 223/49. 22. Maynier, P.; Jungman, B.; Dollet, J.: Hardenability Concepts with Application to Steel, The Met. Society of AIME, Warrendale, USA, 1978, S. 518/45. 23. Grange, R. A.; Hribal, C. R.; Porter, L. F.: Met. Trans. A 8 (1977) Nr. 11, S. 1775/85. 24. Sankar, I. B.; Rao, K. M.; Krishna, A. G.: Int. J. Adv. Manuf. Techn. 47 (2010) Nr. 9-12, S. 1159/66. 25. Çetinel, H., Toparli, M., Özsoyeller, L.: Mech. of Mat. 32 (2000) Nr. 6, S. 339/47. 26. Mukherjee, M.; Dutta, C.; Haldar, A.: Mat. Sci. Eng. A 543 (2012), S. 35/43, 2012. 27. Dimatteo, A.; Vannucci, M.; Colla, V.: Steel Res. Intern. 87 (2016) Nr. 3, S. 276/87. 28. Cadoni, E.; Dotta, M.; Forni, D. et al.: Materials Design 49 (2013), S. 657/66. 29. ISO 6507-1:2005 Metallic materials. Vickers hardness test. Part 1: Test method. International Organization for Standardization (Technical Commitee ISO/ TC164/SC3 Hardness Testing), Ginebra, 2005. 30. Hortigón, B.; Gallardo, J. M.; Nieto-García E. J. et al.: Rev. de Metalurgia 53 (2017), e094. 31. Hortigón, B.; Gallardo, J. M.; Nieto-García, E. J. et al.: Análisis de la geometría de la estricción en los aceros corrugados Tempcore. In: Anales de Mecánica de la Fractura, Comunicaciones del XXXV Encuentro del Grupo Español de Fractura, (2018), S. 40/46. 32. ISO 18203:2106. Steel: Determination of the thickness of surfacehardened layers, Int. Organization for Standardization (Technical Committee: ISO/TC17/SC7 Methods of testing (other than mechanical tests and chemical analysis), 2016. 33. ISO 15630-1:2010: Steel for the reinforcement and prestressing of concrete — Test methods — Part 1: Reinforcing bars, wire rod and wire. International Organization for Standardization (Technical Commitee ISO/ TC17/SC16 Steels for the reinforcement and prestressing of concrete), Ginebra, 2010. 34. ISO 6892-1:2016: Metallic materials — Tensile testing — Part 1: Method of test at room temperature. International Organization for Standardization (Technical Committee: ISO/TC164/SC1 Uniaxial testing), Ginebra, 2010. 35. Nadai, A.: Theory of flow and fracture of solids, McGraw Hill, New York, USA, 1950. 36. Considère, M.: Ann. des ponts chaussées 9 (1885), S. 574/775. 37. Hollomon, J. H.: Trans. Am. Inst. Min. Metall. Petroleum Eng. 162 (1945) S. 268/90. 38. Dieter, G. E.: Mechanical Metallurgy, 2. Aufl., McGraw Hill, New York, USA, 1976. 39. Dowling, N. E.: Mechanical Behaviour of Materials: Engineering Methods for Deformation, Fracture and Fatigue, 2. Aufl ., Upper Saddle River, New York, USA, Prentice Hall, 1999. 40. Aparicio, G.; D’Armas, H.; Ciaccia, M.: Rev. Ingeniería UC 14 (2007), S. 57/63. 41. Voigt, W.: Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, [in:] Annalen der Physik, 274 (1889), S. 573/87. https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18892741206 [Zugriff am: 11.07.2018]. |