Journals →  Tsvetnye Metally →  2019 →  #10 →  Back

ArticleName Influence of chemical purity of initial reagents ZnO, WO3 and Yb2O3 on spectral-absorbing quality of ZnWO4 single crystals
DOI 10.17580/tsm.2019.10.05
ArticleAuthor Subbotin K. A., Titov A. I.,Mozhevitina E. N., Lis D. A.

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia:

E. N. Mozhevitina, Researcher at the Department of Crystals Chemistry and Technology, Candidate of Chemical Sciences


D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia1 ; Prokhorov General Physics Institute of RAS, Moscow, Russia2:

K. A. Subbotin, Senior Lecturer at the Department of Crystals Chemistry and Technology1, Head of the Laser Crystal Spectroscopy Laboratory2, Candidate of Technical Sciences, e-mail:
A. I. Titov, Graduate Student1, Engineer of Laser Crystal Spectroscopy Laboratory2


Prokhorov General Physics Institute of RAS, Moscow, Russia:
D. A. Lis, Researcher at the Laser Crystal Spectroscopy Laboratory


Concentrations of 64 random impurity elements into the source chemicals of tungstic oxide, zinc oxide and ytterbium sesquioxide from different manufacturers were determined by inductively coupled plasma mass spectrometry. Single crystals of zinc tungstate, both nominally pure ZnWO4 and ytterbium ionactivated Yb:ZnWO4, were grown in air by Czochralski method from platinum crucibles using different combinations of initial reagents. The analysis of optical absorption spectra of the grown crystals has showed that the total absorption of crystals includes two components. The first one is removed by prolonged hightemperature oxidative annealing of crystals and is probably determined by color centers based on oxygen vacancies formed as a result of insufficient oxidazing potential of the growth atmosphere. The second component is not removed during annealing and probably depends upon the impurity ions, since correlation between concentrations of random impurities in the source chemicals and the nature of the second component of optical absorption of crystals has been established. Analysis of both obtained results and the literature suggests that ions of trivalent manganese serve as an absorbing center, and its absorption cross-section is abnormally large.

keywords Single crystal, zinc tungstate, alloying, ytterbium, Czochralski method, chemical purity, inductively coupled plasma mass spectrometry, optical absorption, color center

1. Kravchenko V. B. Crystal structure of the monoclinic form of magnesium tungstate MgWO4. Journal of Structural Chemistry. 1969. Vol. 10, No. 1. pp. 139–140.
2. Sleight A. W. Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallographica: B. 1972. Vol. 28. pp. 2899–2902.
3. Wang X., Fan Z., Zhang H., Yu H., Wang J. Characterization of ZnWO4 Raman crystal. Optical Materials Express. 2017. Vol. 7, No. 6. pp. 1732–1744.
4. Becker P., Bohat L., Eichler H. J., Rhee H., Kaminskii A. A. High-gain Raman induced multiple Stokes and anti-Stokes generation in monoclinic multiferroic MnWO4 single crystals. Laser Physics Letters. 2007. Vol. 4, No. 12. pp. 884–889.
5. Zhang L., Chen W., Lu J., Lin H., Li L., Wang G., Zhang G., Lin Z. Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO4 crystal. Optical Materials Express. 2016. Vol. 6, No. 5. pp. 1627–1634.
6. Lu J., Lin H., Zhang G., Li B., Zhang L., Lin Z., Chen Y.-F., Petrov V., Chen W. Direct generation of an optical vortex beam from a diode-pumped Yb:MgWO4 laser. Laser Physics Letters. 2017. Vol. 14, No. 8. pp. 085807–1-6.
7. Lin H., Zhang G., Zhang L., Lin Z., Pirzio F., Agnesi A., Petrov V., Chen W. Continuous-wave and SESAM mode-locked femtosecond operation of a Yb:MgWO4 laser. Optics Express. 2017. Vol. 25, No. 10. pp. 11827–11832.
8. Zhang L., Lin H., Zhang G., Mateos X., Serres J. M., Aguilo M., Diaz F., Griebner U., Petrov V., Wang Y., Loiko P., Vilejshikova E., Yumashev K., Lin Z., Chen W. Crystal growth, optical spectroscopy and laser action of Tm3+-doped monoclinic magnesium tungstate. Optics Express. 2017. Vol. 25, No. 4. pp. 3682–3693.
9. Loiko P., Serres J. M., Mateos X., Aguil M., D!az F., Zhang L., Lin Z., Lin H., Zhang G., Yumashev K., Petrov V., Griebner U., Wang Y., Choi S. Y., Rotermund F., Chen W. Monoclinic Tm3+:MgWO4: a promising crystal for continuous-wave and passively Q-switched lasers at ~ 2 μm. Optics Letters. 2017. Vol. 42, No. 6. pp. 1177–1180.
10. Zhongchao Xia, Fugui Yang, Liang Qiao, Fengpo Yan. End pumped yellow laser performance of Dy3+:ZnWO4. Optics Communications. 2017. Vol. 387. pp. 357–360.
11. Wang Y., Chen W., Mero M., Zhang L., Lin H., Lin Z., Zhang G., Rotermund F., Cho Y. J., Loiko P., Mateos X., Griebner U., Petrov V. Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber. Optics Letters. 2017. Vol. 42, No. 16. pp. 3076–3079.
12. Kosmyna M. B., Nazarenko B. P., Puzikov V. M., Shekhovtsov A. N., Ananenko A. A., Borodenko Yu. A., Grinyov B. V., Kozmin Yu. S., Tarasov V. A. CdWO4 crystal growth and production of a spectrometric detection unit with a largevolume (V = 350 cm3) crystal. Crystallography Reports. 2009. Vol. 54, No. 7. pp. 1265–1267.
13. Galashov E. N., Gusev V. A., Shlegel V. N., Vasiliev Ya. V. The growth of ZnWO4 and CdWO4 single crystals from melt by the low thermal gradient Czochralski technique. Crystallography Reports. 2009. Vol. 54, No. 4. pp. 689–691.
14. Nagornaya L. L., Dubovik A. M., Vostretsov Yu. Ya., Grinyov B. V., Danevich F. A., Katrunov K. A., Mokina V. M., Onishchenko G. M., Poda D. V., Starzhinskiy N. G., Tupitsyna I. A. Growth of ZnWO4 crystal scintillators for high sensitivity 2 experiments. IEEE Transactions on Nuclear Science. 2008. Vol. 55, No. 3. pp 1469–1472.
15. GOST 24147–80. Super pure ammonia aqueous solution. Specifications. Introduced: 01.01.1981.
16. TU 6-09-01-577–79. Super pure annealed zinc oxide 14-2. Introduced: 01.04.1979.
17. TU 48-4-524–90. Rare-earth metal oxides: gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, yttrium. Introduced: 01.01.1991.

18. Kuzmicheva G. M., Rybakov V. B., Subbotin K. A., Zharikov E. V., Lis D. A., Nikolaev D. A., Senin V. G. Colors of mixed-substituted double molybdate single crystals having sheelite structure. Russian Journal of Inorganic Chemistry. 2012. Vol. 57, No. 8. pp. 1205–1211.
19. Kuzmicheva M., Lis D. A., Subbotin K. A., Rybakov V. B., Zharikov E. V. Growth and structural X-ray investigations of scheelite-like single crystals Er,Ce:NaLa(MoO4)2 and Yb:NaGd(WO4)2. Journal of Crystal Growth. 2005. Vol. 275. pp. e1835–e1842.
20. Volkov V., Rico M., Mendez-Blas A., Zaldo C. Preparation and properties of disordered NaBi(XO4)2, X = W or Mo, crystals doped with rare earths. Journal of Physics and Chemistry of Solids. 2002. Vol. 63, No. 1. pp. 95–105.
21. Kowalski Z., Kaczmarek S. M., Berkowski M., Glowacki M., Zhydachevskii Y. A., Suchocki A. Growth and optical properties of ZnWO4 single crystals pure and doped with Ca and Eu. Journal of Crystal Growth. 2017. Vol. 457. pp. 117–121.
22. Kck S., Hartung S., Hurling S., Petermann K., Huber G. Optical transitions in Mn3+-doped garnets. Physical Review: B. 1998. Vol. 57, No. 4. pp. 2203–2216.
23. Kck S. Laser-related spectroscopy of ion-doped crystals for tunable solidstate lasers. Applied Physics: B. 2001. Vol. 72, No. 5. pp. 515–562.
24. Gattermann U., Rska B., Paulmann C., Park S.-H. Large single crystal growth of MnWO4-type materials from high-temperature solutions. Journal of Crystal Growth. 2016. Vol. 453. pp. 40–48.

Language of full-text russian
Full content Buy