ArticleName |
Веерный механизм динамических трещин сдвига как источник парадоксов прочности и хрупкости
горных пород |
ArticleAuthorData |
Дальневосточный федеральный университет, Владивосток, Россия:
Тарасов Б. Г., проф., д-р техн. наук, bgtaras@gmail.com |
Abstract |
Описаны основы ранее неизвестного механизма разрушения (веерного механизма), который управляет развитием трещин сдвига в прочных породах при объемном неравнокомпонентном сжатии, соответствующем сейсмическим глубинам, и обусловливает аномальные свойства пород. Проанализирована специфическая структура динамических трещин.
Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (грант № RFMEFI58418X0034). |
References |
1. Ortlepp W. D. Rock Fracture and Rockbursts: An Illustrative Study. Series M9. Johannesburg : The South African Institute of Mining and Metallurgy, 1997. 98 p. 2. Scholz C. H. The Mechanics of Earthquakes and Faulting. 3rd ed. Cambridge : Cambridge University Press, 2018. 519 p. 3. Louchnikov V. N., Eremenko V. A., Sandy M. P., Bucher R. Underground excavation support in deformable and rockburst-hazardous rock mass conditions. Gornyi Zhurnal. 2014. No. 4. pp. 37–43. 4. Eremenko V. A., Louchnikov V. N., Sandy M. P., Shelukhin I. S. Evaluation of roof conditions in roomand-pillar mining in permafrost zone. Gornyi Zhurnal. 2015. No. 3. pp. 24–32. DOI: 10.17580/gzh.2015.03.04 5. Louchnikov V. N., Eremenko V. A., Sandy M. P. Ground support liners for underground mines: energy absorption capacities and costs. Eurasian Mining. 2014. No. 1. pp. 54–62. 6. Eremenko V. A., Neguritsa D. L. Efficient and active monitoring of stresses and strains in rock masses. Eurasian Mining. 2016. No. 1. pp. 21–24. DOI: 10.17580/em.2016.01.02 7. Yehuda Ben-Zion. Dynamic ruptures in recent models of earthquake faults. Journal of the Mechanics and Physics of Solids. 2001. Vol. 49, Iss. 9. pp. 2209–2244. 8. Archuleta R. J. Analysis of near-source static and dynamic measurements from the 1979 Imperial Valley earthquake. Bulletin of the Seismological Society of America. 1982. Vol. 72, No. 6A. pp. 1927–1956. 9. Lachenbruch A. H. Frictional Heating, Fluid Pressure, and the Resistance to Fault Motion. Journal of Geophysical Research: Solid Earth. 1980. Vol. 85, No. B11. pp. 6097–6112. 10. Brown S. R. Frictional heating on faults: Stable sliding versus stick slip. Journal of Geophysical Research: Solid Earth. 1998. Vol. 103, No. B4. pp. 7413–7420. 11. Tarasov B. G. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics. 2014. Vol. 621. pp. 69–84. 12. Tarasov B. Shear Fractures of Extreme Dynamics. Rock Mechanics and Rock Engineering. 2016. Vol. 49, Iss. 10. pp. 3999–4021. 13. Stavrogin A. N., Tarasov B. G. Experimental physics and mechanics of rocks. Saint-Petersburg : Nauka, 2001. 342 p. 14. Reches Z., Lockner D. A. Nucleation and growth of faults in brittle rocks. Journal of Geophysical Research: Solid Earth. 1994. Vol. 99, No. B9. pp. 159–173. 15. Tarasov B. Fan-hinged shear : online video. 2016. Available at: https://www.youtube.com/watch?v=_-AUzCEw35M (accessed: 15.06.2019). 16. Heaton T. H. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors. 1990. Vol. 64, Iss. 1. pp. 1–20. 17. Tarasov B. G., Guzev M. A., Sadovskii V. M., Cassidy M. J. Modelling the mechanical structure of extreme shear ruptures with friction approaching zero generated in brittle materials. International Journal of Fracture. 2017. Vol. 207, Iss. 1. pp. 87–97. |