Журналы →  Tsvetnye Metally →  2020 →  №3 →  Назад

LIGHT METALS, CARBON MATERIALS
Название Developing a process for hydrochloric acid leaching of the Troshkovsky kaolin clay
DOI 10.17580/tsm.2020.03.07
Автор Ivanov M. A., Bozhko G. G., Medvedev A. S., Tarasov V. P.
Информация об авторе

National University of Science and Technology “MISiS”, Moscow, Russia:

M. A. Ivanov, Design Engineer, Centre for Industrial Technology Engineering, e-mail: iamivma@gmail.com
G. G. Bozhko, Associate Professor, Department of Non-Ferrous Metals and Gold, Candidate of Technical Sciences, e-mail: bojko06@mail.ru
A. S. Medvedev, Professor, Department of Non-Ferrous Metals and Gold, Doctor of Technical Sciences, e-mail: mas1941medvedev@yandex.ru
V. P. Tarasov, Head of Department, Department of Non-Ferrous Metals and Gold, Doctor of Technical Sciences, e-mail: vptar@misis.ru

Реферат

This paper looks at the process of atmospheric hydrochloric acid leaching of raw and roasting kaolin clay, as well as the process of pressure hydrochloric acid leaching of raw kaolin clay. It also examines the phase transformations that take place in the high-silicon aluminium material – i.e. the kaolin clay from the Troshkovsky deposit – during roasting. Dehydration of aluminium minerals contained in kaolin clay is associated with the process of dehydration of montmorillonites without destroying their crystal lattices. At the same time the kaolinites, which are poorly soluble in hydrochloric acid, acquire an acid-soluble form (amorphous aluminium silicate – metakaolinite). Optimum process conditions for kaolin clay roasting have been identified. A direct relationship has been established between the kaolin clay dehydration rate and the roasting temperature and time. It was found that the recovery of aluminium from roasting kaolin clay is more than three times higher than from raw kaolin clay if the process of atmospheric hydrochloric acid leaching is conducted in the same conditions. Optimum process conditions have been established for atmospheric and pressure hydrochloric acid leaching of kaolin clays, i.e. hydrochloric acid concentration, temperature and time. The activation energy has been determined for the process of pressure hydrochloric acid leaching of kaolin clay: Eact = 33 kJ/mol. The activation energy was calculated based on experimental data and it indicates that the process of pressure hydrochloric acid leaching of kaolin clay is constrained by theleaching agent diffusing to the reaction surface through a growing layer of the reaction products.

Ключевые слова Kaolinite, montmorillonite, hydrochloric acid, atmospheric leaching, roasting, metakaolinite, dehydrated montmorillonite, pressure leaching, filtration, aluminium chloride solution, Si-stoff
Библиографический список

1. Layner A. I. Alumina production: Learner’s guide. Moscow : Gosudarstvennoe nauchno-tekhnicheskoe izdatelstvo literatury po chernoy i tsvetnoy metallurgii, 1961. 620 p.
2. Layner Yu. A. Comprehensive processing of aluminium materials with the help of acid methods. Moscow : Nauka, 1982. 208 p.
3. Brichkin V. N., Kurtenkov R. V., Eldib A. B., Bormotov I. S. State and development options for the raw material base of aluminum in non-bauxite regions. Obogashchenie Rud. 2019. No. 4. pp. 31–37. DOI: 10.17580/or.2019.04.06.
4. Ivanov M. A., Pak V. I., Nalivayko A. Yu., Medvedev A. S., Kirov S. S., Bozhko G. G. Prospective use of the Russian high-silicon aluminium materials in alumina production. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2019. Vol. 330, No. 3. pp. 93–102.
5. Lainer Yu. A., Milkov G. A., Samoilov E. N. Advanced techniques for production of aluminium and its compound. Tsvetnye Metally. 2012. No. 6. pp. 42–47.
6. Balmaev B. G., Kirov S. S., Pak V. I., Ivanov M. A. Kinetics of hightemperature hydrochloric leaching of kaolin clays of east-siberian deposits in laboratory conditions and pilot plant tests. Tsvetnye Metally. 2018. No. 3. pp. 38–45. DOI: 10.17580/tsm.2018.03.06.
7. Senyuta A. S., Panov A. V., Suss A. G., Layner Y. A. Innovative technology for alumina production from low-grade raw materials. Light Metals. 2013. pp. 203–208.

8. Lysenko A. P., Kondrateva E. S., Shilovskiy S. Yu. Electrochemical production of aluminum hydroxide, including the removal of iron from aluminum chloride. Tsvetnye Metally. 2018. No. 5. pp. 41–44. DOI: 10.17580/tsm.2018.05.05.
9. Balmaev B. G., Kirov S. S., Ivanov M. A., Pak V. I. Filtration process modeling for aluminium-bearing hydrochloric acid pulp. Tsvetnye Metally. 2017. No. 10. pp. 63–68. DOI: 10.17580/tsm.2017.10.07.
10. Kenzhaev M. E., Islamova M. Sh., Mirzakulov Kh. Ch. Understanding the effect of the baking process on the recovery of alumina from the Angrensk kaolinites. Universum: Tekhnicheskie nauki: elektronnyy nauchnyy zhurnal. 2017. No. 4. Available at: http://7universum.com/ru/tech/archive/item/4678.
11. Nalivaiko A. Yu., Lysenko A. P., Pak V. I., Ivanov M. A. Feasibility Assessment for Leucosapphire Production from Aluminum Oxide Prepared Electrochemically. Refractories and Industrial Ceramics. 2018. Vol. 59, Iss. 1. pp. 80–84.
12. Eldeeb A. B., Brichkin V. N., Kurtenkov R. V. Bormotov I.S. Extraction of alumina from kaolin by a combination of pyro- and hydro-metallurgical processes. Applied Clay Science. 2019. Vol. 172. pp. 146–154.
13. Dubovikov O. A., Brichkin V. N., Ris A. D., Sundurov A. V. Thermochemical activation of hydrated aluminosilicates and its importance for alumina production. Non-ferrous Metals. 2018. No. 2. pp. 10–15. DOI: 10.17580/nfm.2018.02.02
14. Arsentyev V. A., Gerasimov A. M., Mezenin A. O. Kaolines beneficiation technology study with application of hydrothermal modification. Obogashchenie Rud. 2017. No. 2. pp. 3–9. DOI: 10.17580/or.2017.02.01.
15. Dubovikov О. А., Brichkin V. N., Nikolayeva N. V., Romashev А. О. The Middle Timan bauxites thermo-chemical treatment process study. Obogashchenie Rud. 2014. No. 4. pp. 14–18.
16. Mamadzhanov Z. N., Shamshidinov I. T. Leaching of aluminium from the Angrensk kaolinic clays: Study. Universum: Tekhnicheskie nauki: elektronnyy nauchnyy zhurnal. 2018. No. 3. Available at: http://7universum.com/ru/tech/archive/item/5642.
17. Khankhasaeva S. Ts., Dashinamzhilova E. Ts., Rampilova V. V. Effect of heat treatment on montmorillonite texture. Vestnik Buryatskogo gosudarstvennogo universiteta. 2011. No. 3. pp. 134–138.
18. Arsenkin A. M., Bykova Yu. S., Gorshenkov M. V. Measuring, testing and monitoring techniques and tools. Advanced research methods for studying functional materials: Learner’s guide. National University of Science and Technology MISiS. Ed. by S. D. Kaloshkin. Moscow : Izdatelskiy dom “MISiS”, 2010. 199 p.
19. Betekhtin A. G. Mineralogy course. Moscow : KDU, 2010. 736 p.
20. Sandeep S., Ninu J. M., Sreejith K. A. Mineralogical transformations under fire in the montane grassland systems of the southern Western Ghats, India. Current Science. 2019. Vol. 116. pp. 996–971.
21. Martin-Marquez J., Rincon J. Ma., Romero M. Mullite development on firing in porcelain stoneware bodies. Journal of the European Ceramic Society. 2010. Vol. 30, Iss. 7. pp. 1599–1607.
22. Smirnov A., Kibartas D., Senyuta A., Panov A. Miniplant tests of HCl technology of alumina production. Minerals, Metals and Materials Series. Light Metals. 2018. pp. 57–62.
23. GOST 30558–98. Metallurgical alumina. Specifications. Introduced: 2000.07.01.

Language of full-text русский
Полный текст статьи Получить
Назад