Journals →  Tsvetnye Metally →  2020 →  #3 →  Back

LIGHT METALS, CARBON MATERIALS
ArticleName Cycle of production of aluminum-scandium alloys and alloys
DOI 10.17580/tsm.2020.03.10
ArticleAuthor Yatsenko S. P., Skachkov V. M., Pasechnik L. А., Ovsyannikov B. V.
ArticleAuthorData

Institute of Solid State Chemistry at the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia:

S. P. Yatsenko, Professor, Chif Researcher, Doctor of Chemical Sciences, e-mail: yatsenko@ihim.uran.ru
V. M. Skachkov, Senior Researcher, Candidate of Chemical Sciences, e-mail: skachkov@ihim.uran.ru
L. А. Pasechnik, Lead Researcher, Candidate of Chemical Sciences, e-mail: pasechnik@ihim.uran.ru

 

Kamensk Uralsky Metallurgical Works OJSC, Kamensk-Uralsky, Russia:
B. V. Ovsyannikov, Principal Foundry Engineer, Candidate of Techical Sciences, e-mail: ovsyannikovBV@kumw.ru

Abstract

Alumina sludge is a large-tonnage waste containing sufficiently high concentrations of elements IIIB and IVB of subgroups of the Periodic system. The article substantiates the possibility of extracting scandium and other components from sludge in the form of oxides or fluorides and presents options for the industrial implementation of such extraction while reducing dust and gas emissions of alumina production. The technology of obtaining and application of alumino-scandium master-alloy was created and brought to an industrial scale. The block for obtaining the initial scandium oxide on a scale of hundreds of kilograms per year with the simultaneous absorption of toxic furnace gases is introduced at the Bogoslovsky Aluminum Plant. Describes the conditions of the standard alloys of scandium, zirconium, yttrium and other rare metals through alumothermic recovery of salt melts containing fluorides and oksihlorid. Describes the preparation of aluminum-scandium alloys aluminum-base A85 injection technology powder industrial oven plant of JSC “Kamensk Uralsky Metallurgical Works”. The possibility of significant purification of the alloy from impurities is shown. The method allows to reduce the process of preparation of multicomponent alloys and provide a more uniform distribution of alloying additives in comparison with the usual practice of introducing ligatures into aluminum. Besides the obtaining of products, the involvement of red mud in the production will promote also environment improvement around alumina plants. In the carbonization technology for red mud processing, its pH decreases from >10 to 8–8.5, and carbon dioxide is additionally absorbed from exhaust gases of sintering kilns, thereby considerably reducing the impacts on air.
This research has been carried out in conformance with the state assignment and the research plan of the Institute of Solid State Chemistry at the Ural Branch of the Russian Academy of Sciences.

keywords Scandium, aluminum, technology, master-alloy, enrichment, red mud
References

1. Yashin V. V., Kabanov A. S., Aryshensky E. V., Latushkin I. A. How microalloying of the AlMg5 alloy with transition metals (Sc, Zr, Nb) impacts the structure of a cast billet. Tsvetnye Metally. 2019. No. 2. pp. 56–61. DOI: 10.17580/tsm.2019.02.09.
2. Yatsenko S. P., Pasechnik L. А. Scandium: Science and technology. Yekaterinburg : Izdatelstvo Uralskogo universiteta, 2016. 364 p.
3. Yang Wang, Zheng Li, Ruizhi Wu. Effects of Sc and Zr Addition on Microstructure and Mechanical Properties of Al–3Cu–2Li Alloy. Ed. C. Chesonis. Light Metals. The Minerals, Metals & Materials Series. 2019. pp. 471–480.
4. Skachkov V. M., Yatsenko S. P. Doping of aluminium alloys with rare metals as the basis for innovative materials for construction and transportation industries. Nanotechnologies in Construction: A Scientific Internet-Journal. 2016. Vol. 8, No. 3. pp. 60–69.
5. Shirokova A. G., Pasechnik L. A., Yatsenko S. P. Prospects of application of microencapsulated extractants for extraction of scandium and rare-earth elements. Non-ferrous Metals. 2014. No. 1. pp. 41–44.
6. U.S. Geological Survey. Mineral commodity summaries. 2019. 200 p.
7. Pyagay I. N., Kozhevnikov V. L., Pasechnik L. A. Recovery of scandium concentrate through recycling of red mud. Zapiski Gornogo instituta. 2016. Vol. 20, No. 5. pp. 225–232.
8. Pasechnik L. A., Pyagay I. N., Skachkov V. M., Yatsenko S. P. Use of kiln off-gas to recover rare elements from red mud. Ekologiya i promyshlennost Rossii. 2013. June. pp. 36–38.
9. Pasechnik L. A., Yatsenko S. P., Pyagay I. N. Method of producing scandium oxide. Patent RF, No. 2478725. Published: 10.04.2013. Bulletin No. 10.
10. Pyagay I. N., Yatsenko S. P., Pasechnik L. A., Ibragimov T. S. Method of producing of scandium concentrate from red slime. Patent RF, No. 2483131. Published: 27.05.2013. Bulletin No. 15.
11. Pyagay I. N. The block processing of red mud of alumina production. Tsvetnye Metally. 2016. No. 7. pp. 43–51.
12. Pasechnik L. A., Sabirzyanov N. A., Yatsenko S. P. Investigating the phase equilibria in the multicomponent system (Al, Sc)2(SO4)3–FeSO4–H2SO4–H2O at 20 oC. Tomskiy nauchnyy vestnik. 2003. No. 4 (25). pp. 219–221.
13. Shirokova A. G., Pasechnik L. A., Yatsenko S. P. Interaction of REE ions with organophosphorous compounds microencapsulated in a porous polymer. Izvestiya RAN. Seriya Fizicheskaya. 2012. Vol. 76, No. 5. pp. 726–729.
14. Pasechnik L. A., Pyagay I. N., Sabirzyanov N. A. et al. How the red mud processing technique influences copper (II) ion sorption. Ekologiya i promyshlennost Rossii. 2016. No. 5. pp. 27–33.
15. Yanagisawa K., Yamasaki N. Reduction of haematite to magnetite under controlled hydrothermal conditions with hydrogen gas. Journal of Materials Science. 1991. Vol. 26. pp. 473–478.
16. Vaylert A. V., Pyagay I. N., Kozhevnikov V. L., Pasechnik L. A., Yatsenko S. P. et al. Autoclave hydrometallurgical processing of alumina production red mud. Tsvetnye Metally. 2014. No. 3. pp. 31–35.
17. Medyankina I. S., Pasechnik L. A., Sabirzyanov N. A. et al. Fluoride methods for processing silicon bearing material. Proceedings of the National Russian School of the Ural Branch of the Russian Academy of Sciences. 2015 (November). pp. 1–4.
18. Rakov E. G., Melnichenko E. I. The properties and reactions of ammonium fluorides. Uspekhi khimii. 1984. Vol. LIII, Iss. 9. pp. 1463–1485.
19. Vedmil L. B., Zhilina E. M., Krasikov S. A., Merkushev A. G. Experimental analysis of interaction between titanium and gadolinium oxides and aluminium. Rasplavy. 2018. No. 4. pp. 481–486.
20. Kosov Ya. I., Bazhin V. Yu. Synthesis of aluminium-erbium master alloys in chloride-fluoride melts. Rasplavy. 2018. No. 1. pp. 14–28.
21. Pershin P. S., Kataev A. A., Filatov A. A., Suzdaltsev A. V., Zaikov Y. P. Synthesis of Al–Zr alloys via ZrO2 aluminum-thermal reduction in KF–AlF3–based melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2017. Vol. 48, No. 4. pp. 1962–1969.
22. Filatov A. A., Pershin P. S., Nikolaev A. Yu., Suzdaltsev A. V. Obtaining of Al – Zr alloys and ligatures during the electrolysis of KF – NaF – AlF3 – ZrO2 melts. Tsvetnye Metally. 2017. No. 11. pp. 27–31.
23. Gostishchev V. V., Kim E. D., Ri E. Kh., Khimukhin S. N. Obtaining of complex-alloyed nickel aluminides and complex ligatures by metal oxides’ metallothermy. Tsvetnye Metally. 2017. No. 10. pp. 79–84.
24. Kozlovskiy G. A., Makhov S. V., Moskvitin V. I., Popov D. A. Technical and economic efficiency of production of aluminum master alloys containing Ti, Zr and B from different raw materials. Tsvetnye Metally. 2017. No. 3. pp. 53–56.
25. Ri E. Kh., Ri Khosen, Deev V. B., Goncharov A. V. Technology of obtainment of ligature alloys with rare-earth metal aluminides. Tsvetnye Metally. 2018. No. 4. pp. 61–66.
26. Suzdaltsev A. V., Nikolaev A. Yu., Zaikov Yu. P. Modern ways for obtaining Al – Sc master alloys: A review. Tsvetnye Metally. 2018. No. 1. pp. 69–73.
27. Lysenko A. P., Shilovskiy S. Yu., Kondrateva E. S. Combined methods for the production of aluminum alloys. Tsvetnye Metally. 2018. No. 9. pp. 39–43.
28. Mann V. Kh., Pingin V. V., Vinogradov D. A., Shtefanyuk Yu. M. et al. Method for obtaining aluminium-scandium foundry alloy. Patent RF, No. 2593246. Published: 10.08.2016. Bulletin No. 22.
29. Zaykov Yu. P., Suzdaltsev A. V., Nikolaev A. Yu., Tkacheva O. Yu. et al. Electrolytic method for continuous production of aluminium alloy with scandium. Patent RF, No. 2599312. Published: 10.10.2016. Bulletin No. 28.
30. Mann V. Kh., Pingin V. V., Vinogradov D. A., Khramov D. S. Method for producing aluminium-based alloy and device for its implementation. Patent RF, No. 2621207. Published: 01.06.2017. Bulletin No. 16.
31. Zaykov Yu. P., Suzdaltsev A. V., Nikolaev A. Yu., Tkacheva O. Yu. et al. Method of continuous production of aluminium ligature with 2 wt. % of scandium. Patent RF, No. 2629418. Published: 29.08.2017. Bulletin No. 25.
32. Skachkov V. M., Yatsenko S. P. Obtaining of Sc, Zr, Hf and Y base metals on the basis of aluminum by method of high-temperature exchange reactions in salt melts. Tsvetnye Metally. 2014. No. 3. pp. 22–26.
33. Yatsenko S. P., Skachkov V. M., Pasechnik L. A., Yatsenko A. S. Analysis of impurities in aluminium alloys. Tekhnologiya metallov. 2013. No. 10. pp. 17–23.
34. Yatsenko S. P., Ovsyannikov B. V., Varchenya P. A. et al. An industrial technique of obtaining aluminium-scandium master alloys through process powder injection in molten aluminium. Khimicheskaya tekhnologiya. 2011. No. 6. pp. 321–328.
35. Yatsenko S. P., Yatsenko A. S., Ovsyannikov B. V., Varchenya P. A. Procedure for production of alumo-scandium containing additional alloy and charge for production of alumo-scandium containing additional alloy. Patent RF, No. 2421537. Published: 20.06.2011. Bulletin No. 17.
36. Sabirzyanov N. A., Skachkov V. M., Yatsenko S. P. Refining of primary aluminum with application of graphitized materials. Tsvetnye Metally. 2013. No. 12. pp. 44–47.
37. Pyagay I. N. Experience of red mud processing with obtaining a number of valuable elements (Sc, Zr, Y) and iron-containing raw materials for the steel industry. Chernye Metally. 2019. No. 1. pp. 49–54.

Language of full-text russian
Full content Buy
Back