Журналы →  Gornyi Zhurnal →  2020 →  №4 →  Назад

PHYSICS OF ROCKS AND PROCESSES
Название Structural features and mechanical properties of anthracite, metaanthracite and graphite
DOI 10.17580/gzh.2020.04.05
Автор Kossovich E. L., Epshtein S. A., Dobryakova N. N., Minin M. G.
Информация об авторе

National University of Science and Technology ‘MISIS’, Moscow, Russia:

E. L Kossovich, Senior Researcher, Scientific-educational laboratory of physics and chemistry of coals, Candidate of Physico-mathematical Sciences, e.kossovich@misis.ru
S. A. Epshtein, Head of scientific-educational laboratory of physics and chemistry of coals, Doctor of Engineering Sciences
N. N. Dobryakova, Researcher of scientific-educational laboratory of physics and chemistry of coals, Candidate of Engineering Sciences

 

Ural federal university named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russia:
M. G. Minin, Junior Researcher of Department of physical techniques and devices for quality control, Institute of Physics and Technology

Реферат

The results are presented on the studies of mechanical properties of anthracite, metaanthracite and graphite samples of the Omsukchan coal basin (Magadan region) by nanoindentation are presented. It was found that at the micro level, the mechanical properties in the series of anthracite-metaanthracitegraphite undergo qualitative and quantitative changes. This is manifested, first of all, in a sequential increase in the stiffness of the material (established by the modulus of elasticity). It was shown that the damage coefficient, reflecting the ability the studied objects to be crushed, varies ambiguously, which is reflected in a slight decrease during the transition from anthracite to metaanthracite, and a significant increase in the series of metaanthracite-graphite. It was established that the mechanical properties in the series of anthracite-metaanthracite-graphite are determined by the structural features of the studied geomaterials. The elastic modulus and hardness of the geomaterials increase proportionally with an increase in the optical anisotropy index. It is shown that graphite differs significantly in its mechanical properties from anthracite and metaanthracite. This is expressed in the presence of anisotropy of its mechanical properties with respect to bedding, high stiffness and a pronounced ability to fracturing.
This work was supported by the Russian Science Foundation (grant No. 18–77–10052).

Ключевые слова Coal, anthracite, metaanthracite, graphite, structure, elastic modulus, fracturing ability, dust, reflection anisotropy
Библиографический список

1. Deurbergue A., Oberlin A., Oh J.H., Rouzaud J.N. Graphitization of Korean anthracites as studied by transmission electron microscopy and X-ray diffraction. International Journal of Coal Geology. 1987. Vol. 8, No. 4. pp. 375–393. DOI: 10.1016/0166–5162(87)90074–7.
2. Bustin R. M., Rouzaud J. N., Ross J. V. Natural graphitization of anthracite: Experimental considerations. Carbon. 1995. Vol. 33, No. 5. pp. 679–691. DOI: 10.1016/0008–6223(94)00155-S.
3. Huan X., Tang Y.-G., Xu J.-J., Lan C.-Y., Wang S.-Q. Structural characterization of graphenic material prepared from anthracites of different characteristics: A comparative analysis. Fuel Processing Technology. 2019. Vol. 183. pp. 8–18. DOI: 10.1016/J.FUPROC.2018.08.017.
4. Zhang S., Liu Q., Zhang H., Ma R., Li K., Wu Y., Teppen B. J. Structural order evaluation and structural evolution of coal derived natural graphite during graphitization. Carbon. 2020. Vol. 157. pp. 714–723. DOI: 10.1016/J.CARBON.2019.10.104.
5. Hower J. C., Levine J. R., James J. W., Daniels E. J., Lewis S. E., Davis A., Gray R. J., Altaner S. P. Appalachian anthracites. Organic Geochemistry. 1993. Vol. 20, No. 6. pp. 619–642. DOI: 10.1016/0146–6380(93)90049-H.
6. Han Y., Wang J., Dong Y., Hou Q., Pan J. The role of structure defects in the deformation of anthracite and their influence on the macromolecular structure. Fuel. 2017. Vol. 206. pp. 1–9. DOI: 10.1016/j.fuel.2017.05.085.
7. Li K., Rimmer S.M., Liu Q. Geochemical and petrographic analysis of graphitized coals from Central Hunan, China. International Journal of Coal Geology. 2018. Vol. 195. pp. 267–279. DOI: 10.1016/j.coal.2018.06.009.
8. Toprak S. Petrographic properties of major coal seams in Turkey and their formation. International Journal of Coal Geology. 2009. Vol. 78, No. 4. pp. 263–275. DOI: 10.1016/j.coal.2009.03.006.
9. Vyalov V. I., Kolomenskaya V. G. Petrographic composition and geochemical features of the metaanthracites and graphites of the Taimyr coal Basin. Solid Fuel Chemistry. 1996. Vol. 30, No. 1. P. 1–11.
10. Skripchenko G. B. Structure and properties of anthracites of thermal metamorphism. Solid Fuel Chemistry. 2010. Vol. 44, No. 5. P. 287–292. DOI: 10.3103/S0361521910050010.
11. Marques M., Suárez-Ruiz I., Flores D., Guedes A., Rodrigues S. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. International Journal of Coal Geology. 2009. Vol. 77, No. 3–4. pp. 377–382. DOI: 10.1016/j.coal.2008.06.002.
12. Bratek K., Bratek W., Gerus-Piasecka I., Jasieńko S., Wilk P. Properties and structure of different rank anthracites. Fuel. 2002. Vol. 81, No. 1. pp. 97–108. DOI: 10.1016/S0016–2361(01)00120-X.
13. Hower J. C., Davis A. Application of vitrinite reflectance anisotropy in the evaluation of coal metamorphism. Geological Society of America Bulletin. 1981. Vol. 92, No. 6. pp. 350.
14. Cao Y., Mitchell G. D., Davis A., Wang D. Deformation metamorphism of bituminous and anthracite coals from China. International Journal of Coal Geology. 2000. Vol. 43, No. 1-4. pp. 227–242. DOI: 10.1016/S0166–5162(99)00061–0.
15. Coal base of Russia. Vol. 1–6. Ed. by A. A. Timofeev et al. Moscow : Geoinformtsentr, 2001.
16. Kossovich E. L., Dobryakova N. N., Epshtein S. A., Belov D. S. Mechanical properties of coal microcomponents under continuous indentation. Journal of Mining Science. 2016. Vol. 52, No. 5. pp. 906–912. DOI: 10.1134/S1062739116041382.
17. Kossovich E. L., Epshtein S. A., Shkuratnik V. L., Minin M. G. Perspectives and problems of modern depth-sensing indentation techniques application for diagnostics of coals mechanical properties. Gornyi Zhurnal. 2017. No. 12. pp. 25–30. DOI: 10.17580/gzh.2017.12.05.
18. Kossovich E. L., Epshtein S. A., Borodich F. M., Dobryakova N. N., Prosina V. A. Connections between micro/nano scale heterogeneity of mechanical properties of coals and their propensity to outbursts and crushing. Mining Informational and Analytical Bulletin. 2019. No. 5. pp. 156–172. DOI: 10.25018/0236–1493–2019–05–0-156–172.
19. Bulychev S. I., Alekhin V. P., Shorshorov M. K., Ternovskij A. P., Shnyrev G. D. Determination of Young modulus by the hardness indentation diagramю. Zavodskaya Laboratoriya. 1975. Vol. 41, No. 9. pp. 1137–1140.
20. Oliver W. C., Pharr G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research. 2004. Vol. 19, No. 01. pp. 3–20. DOI: 10.1557/jmr.2004.19.1.3.
21. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992. Vol. 7, No. 06. pp. 1564–1583. DOI: 10.1557/JMR.1992.1564.
22. Argatov I. I., Borodich F. M., Epshtein S. A., Kossovich E. L. Contact stiffness depth-sensing indentation: Understanding of material properties of thin films attached to substrates. Mechanics of Materials. 2017. Vol. 114. pp. 172–179. DOI: 10.1016/j.mechmat.2017.08.009.
23. Kossovich E. L., Borodich F. M., Epshtein S. A., Galanov B. A., Minin M. G., Prosina V.A. Mechanical, structural and scaling properties of coals: depth-sensing indentation studies. Applied Physics A. 2019. Vol. 125, No. 3. p. 195. DOI: 10.1007/s00339–018–2282–1.
24. Chen Q., Guan Z., Li Z., Ji Z., Zhuo Y. Experimental investigation on impact performances of GLARE laminates. Chinese Journal of Aeronautics. 2015. Vol. 28, No 6. pp. 1784–1792. DOI: 10.1016/j.cja.2015.07.002.
25. Airoldi A., Vesco M., Van Der Zwaag S., Baldi A., Sala G. Damage in GLARE laminates under indentation loads: Experimental and numerical results. ICCM International Conferences on Composite Materials, July 2009. Edinburgh, UK.
26. Eremin I. V., Lebedev V. V., Tsikarev D. A. Petrography and physical properties of coal. Moscow : Nedra, 1980. 263 p.
27. Eremin I. V., Babashkin B. G., Gagarin S. G., Korolev Yu. M. The subdivision of coals by fragility and ductility. Coke and Chemistry. 2000. No. 2. pp. 7–13.

Language of full-text русский
Полный текст статьи Получить
Назад