Журналы →  Gornyi Zhurnal →  2020 →  №5 →  Назад

PHYSICS OF ROCKS AND PROCESSES
Название Fractured rock mass modeling and stress–strain analysis using the finite element method
DOI 10.17580/gzh.2020.05.01
Автор Latyshev O. G., Prishchepa D. V.
Информация об авторе

Ural State Mining University, Yekaterinburg, Russia:

O. G. Latyshev, Professor, Doctor of Engineering Sciences
D. V. Prishchepa, Assistant, prischepadv@yandex.ru

Реферат

Stability of underground excavations is based on prediction of the rock mass stress–strain behavior. Regarding fractured rock mass, this problem has no unambiguous solution and requires special research to be undertaken. This study aims to develop the stress–strain behavior prediction procedure for fractured rock masses of block structure based on the statistical modeling of the excavation–rock mass system. Prediction of the stress–strain behavior of rock mass is carried out using the finite element method. Setting of the initial conditions for the method implementation software requires consideration of characteristics of the fracture network in rock mass. The article presents the assessment procedure of the stress–strain modulus and dilatancy of rocks based on the fractal analysis of fracture propagation in the course of rock mass deformation. The application of the finite element method is illustrated in terms of the stress–strain analysis of rock mass in the Yubileinoe field (Bashkortostan) in the course of horizontal tunneling. Stress concentration at the excavation boundary is estimated by defining its fractal shape factor with regard to the ratio of the project cross-section area to the perimeter of excavation during heading. The estimate of joint operation of mine support and rock mass takes into account the time factor by determining the influence of creep on the stress–strain modulus of rock mass. The obtained result is used as a framework for the stress–strain behavior prediction in fractured rock mass around underground excavations and for the stable support design.

Ключевые слова Blocky rock mass, stress–strain behavior, finite element method, underground excavation, fractal shape factor, stress concentration factor, stability prediction
Библиографический список

1. Latyshev O. G., Volkov M. N. Modeling physical processes in mining. Yekaterinburg : UGGU, 2015. 337 p.
2. Protosenya A. G., Karasev M. A., Belyakov N. A. Elastoplastic problem for noncircular openings under Coulomb’s criterion. Journal of Mining Science. 2016. Vol. 52, Iss 1. pp. 53–61
3. Vrakas A., Anagnostou G. A finite strain closed-form solution for the elastoplastic ground response curve in tunneling. International Journal for Numerical and Analytical Methods in Geomechanics. 2014. Vol. 38, Iss. 11. pp. 1131–1148.
4. Ali Reza Kargar. An analytical solution for circular tunnels excavated in rock ma sses exhibiting viscous elastic-plastic behavior. International Journal of Rock Mechanics and Mining Sciences. 2019. Vol. 124. 104128. DOI: 10.1016/j.ijrmms.2019.104128
5. Muhammad Shehzad Khalid, Mamoru Kikumoto, Ying Cui, Kiyoshi Kishida. The role of dilatancy in shallow overburden tunneling. Undergrou nd Space. 2019. Vol. 4, Iss. 3. pp. 181–200.
6. Chen W. F., Baladi G. Y. Soil Plasticity: Theory and Implementation. Series: Developments in Geotechnical Engineering. Amsterdam : Elsevier, 1985. Vol. 38. 231 p.
7. Hardin B. O., Drnevich V. P. Shear modulus and damping in soils: design equations and curves. Journal of the Soil Mechanics and Foundation Division. 1972. Vol. 98(118). pp. 667–692.
8. Jardine R. J., Potts D. M., Fourie A. B., Burland J. B. Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction. Géotechnique. 1986. Vol. 36, No. 3. pp. 377–396.
9. Ofoegbu G. I., Smart K. J. Modeling discrete fractures in continuum analysis and insights for fracture propagation and mechanical behavior of fractured rock. Results in Engineering. 2019. Vol. 4. 100070. DOI: 10.1016/j.rineng.2019.100070
10. Karstunen M., Pande G. N. Strain localization in granular media using multilaminate framework. Application of Computational Mechanics in Geotechnical Engineering : Proceedings of the International Workshop. Rotterdam, 1997. pp. 149–173.
11. Zienkiewicz O. C., Pande G. N. Time-dependent multilaminate model of rocks–a numerical study of deformation and failure of rock masses. International Journal for Numerical and Analytical Methods in Geomechanics. 1977. Vol. 1, Iss. 3. pp. 219–247.
12. Alshkane Y. M., Marshall A. M., Stace L. R. Prediction of strength and deformability of an interlocked blocky rock mass using UDEC. Journal of Rock Mechanics and Geotechnical Engineering. 2017. Vol. 9, Iss. 3. pp. 531–542.
13. Goodman R. E. Introduction to Rock Mechanics. 2nd ed. New York : John Wiley & Sons, 1989. 562 p.
14. Zertsalov M. G. Geomechanics. The introduction to mechanics of hard soil. Moscow : ASB, 2014. 352 p.
15. Ruppeneyt K. V. Deformability of fractured rock masses. Moscow : Nedra, 1975. 223 p.
16. Segerlind L. J. Applied Finite Element Analysis. 2nd ed. New York : John Wiley & Sons, 1984. 427 p.
17. Mandelbrot B. B. The Fractal Geometry of Nature. New York : W. H. Freeman and Company, 1982. 468 p.
18. Khani A., Baghbanan A., Norouzi S., Hashemolhosseini H. Effects of fract ure geometry and stress on the strength of a fractured r ock mass. International Journal of Rock Mechanics and Mining Sciences. 2013. Vol. 60. pp. 345–352.
19. Sobol I. M. Monte Carlo method. Moscow : Nauka, 1978. 64 p.
20. Latyshev O. G., Prishchepa D. V. Dilatancy examination at shift of rocks along the fissure. Izvestiya vuzov. Gornyi zhurnal. 2016. No. 4. pp. 55–59.
21. Weibull W. A statistical distribution function of wide applicability. Journal of Applied Mechanics. 1951. Vol. 18. pp. 293–297.
22. Latyshev O. G., Prishchepa D. V. The fractal coefficient of underground workings shape. Izvestiya vuzov. Gornyi zhurnal. 2017. No. 8. pp. 53–57.
23. Latyshev O. G., Prishchepa D. V. Statistical modeling of excavation perimeter in heading with blasting. Investment Geotechnologies for Metalliferous and Nonmetalliferous Deposits : VII International Conference Proceedings. Yekaterinburg : Izdatelstvo UGGU, 2018. pp. 11–16.
24. Erzhanov Zh. S. The theory of creep in rocks and applications. Alma-Ata : Nauka, 1964. 175 p.
25. Vlachopoulos N., Diederichs M. S. Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels. Rock Mechanics and Rock Engineering. 2009. Vol. 42, Iss. 2. pp. 131–146.

Language of full-text русский
Полный текст статьи Получить
Назад