Journals →  Tsvetnye Metally →  2020 →  #5 →  Back

85-th ANNIVERSARY OF CHELYABINSK ZINC PLANT
TECHNOLOGIES, IMPLEMENTED IN PRODUCTION
ArticleName Extraction of a range of non-ferrous and rare metals from industrial waste: physico-chemical basis and technical solutions
DOI 10.17580/tsm.2020.05.05
ArticleAuthor Kozlov P. A.
ArticleAuthorData

UMMC Technical University, Verkhnyaya Pyshma, Russia:

P. A. Kozlov, Deputy Director for Research, e-mail: p.kozlov@tu-ugmk.com

Abstract

Russia’s growing demand for zinc and a whole variety of associated nonferrous and rare metals (such as zinc, lead, cadmium, tin, copper) cannot be satisfied by existing producers due to the lack of raw materials. At the same time, ferrous, non-ferrous and chemical industries have accumulated millions of tons of zinc-containing waste of hazard classes 2–4. By processing such waste materials one can not only replenish the raw materials base but also help the environmental situation in the areas housing metallurgical sites. Such processing would help expand the raw materials base not only for ferrous and non-ferrous industry but also for construction sector. Waelz process, which basically involves distillation of polycomponent systems in a reducing environment, would offer maximum cost-effectiveness as the principal process. The paper features a flow diagram for the processing of industrial waste into the following products:
– zinc, cadmium and indium as massive metals;
– fine-dispersed zinc and indium powders;
– clinker as a raw material to make high-grade cement for the construction industry, as well as low-grade cement to be used as fill material in mining.
Certain elements of this process that have practical and scientific originality have been patented both in Russia and abroad. The following processes have been implemented for the first time in big Waelz kilns:
– steam oxidation of polymetallic waste materials;
– production of process steam by recycling of heat from gases and solid products;
– application of alternative types of fluxes (i. e. dolomite) and alternative fuel (i. e. petroleum coke).
Almost all the recycling processes shown in the block diagram either have been implemented at Chelyabinsk Zinc Plant PJSC or have been field tested and appropriate standard operating procedures are being developed.

keywords Waelz-process, industrial waste, heat recycling, steam oxidation in a Waelz-kiln
References

1. Leontiev L. I. ‘No’ to further accumulation of metallurgical waste. Ekologiya i promyshlennost Rossii. 2013. No. 1. p. 1.
2. Xu Z., Li Q., Nie H. Pressure leaching technique of smelter dust with high-copper and high-arsenic. Transactions of Nonferrous Metals Society of China. 2010. Vol. 20. pp. 176–181.
3. Alguacil F. J., Garcia-Diaz I., Lopez F. et al. Recycling of copper flue dust via leaching-solvent extraction processing. Desalination and Water Treatment. 2015. Vol. 56. pp. 1202–1207.
4. Kasikov A. G., Areshina N. S., Malts I. E. Hydrometallurgical processing of the fine dusts of copper production of OAO Kolskaya GMK. Theoretical Foundations of Chemical Engineering. 2010. Vol. 44, No. 5. pp. 811–817.
5. Harp G. Eisenhaltige Kreislaufstoffe als secundare Rohstoffe in Europa – Processing ferriferous steelworks byproducts as secondary raw materials in Europe. Stahl und Eisen. 2009. Vol. 129, No. 3. pp. 55–62.
6. Piret N. L., Muller D. Beurteilungskriterien der Verarbeitung von Reststoffen mit niedrigem Zinkgehalt aus der Eisen und Stahlproduction. Erzmetall. 1993. Vol. 46, No. 6. pp. 364–368.
7. Segers. Treatment of Electric Arc Furnace Dust. A Case Study in the Environmental Field. ATB-Metallurgie. 1996. Vol. XXXVI, No. 1-2. pp. 111–122.
8. Zunkel A. D. EAF Dust Treatment Technologies and Processes: A Status Report. Proceedings of REWAS’99. San Sebastian, 1999. Vol. II. pp. 1453–1461.
9. Southwick L. M. Perspectives on hydrometallurgical processing of zinc oxide recovered from electric arc furnace dusts. Proceedings of Nickel-Cobalt 1997. Sudbury, August 1997. Vol. III. pp. 373–396.
10. Rutten J. T. Ist der Walzprozess fur EAF Staub noch zeitgemab? Stand der Technic und Herausforderungen. Vernetzung von Zink und Stahl. 2. GDMB Seminar. Leoben, January 2009. pp. 137–149.
11. Nakamura T. Zink Recycling Technology now and in the future. Proceedings of Lead&Zinc 2005. Kyoto, 2005. Vol. I. pp. 123–137.
12. Yakornov S. A., Panshin A. M., Grudnitskiy P. I., Dyubanov V. G. et al. Decomposition of zinc ferrite by lime in EAF dust. Problems of Ferrous Metallurgy and Materials Science. 2017. No. 3. pp. 29–33.
13. Kozlov P. A. The Waels Process. Moscow : “Ore and Metals”, 2003. 160 p.
14. Kozlov P. A., Panshin A. M., Yakornov S. A. Research, Development and Implementation of Processing Zinc Oxidized Raw Material for Zinc and Indium Recovery at Chelyabinsk Zinc Plant. EMC 2017. Leipzig, Germany, 25–28 June 2017. Vol. 4. pp. 1669–1679.
15. Panshin A. M., Shakirzyanov R. M., Izbrekht P. A., Zatonskiy A. V. Basic ways of improvement of zinc production at JSC “Chelyabinsk zinc plant”. Tsvetnye Metally. 2015. No. 5. pp. 19–21.
16. Yakornov S. A., Panshin A. M., Kozlov P. A., Ivakin D. I. Developing a batch pelletizing process on the basis of EAF dusts for pyrometallurgical processing in rotary kilns. Metallurg. 2017. No. 7. pp. 25–29.
17. Kozlov P. A., Panshin A. M., Shakirzyanov R. M., Dyubanov V. G. et al. Method of waelz process of oxidised zinc-containing materials. Patent RF, No. 2516191. Applied: 29.12.2012. Published: 20.05.2014. Bulletin No. 14.
18. Kozlov P. A., Panshin A. M., Zatonskiy A. V., Dyubanov V. G. et al. Charge for waelz process for zinc-lead-tin-bearing materials. Patent RF, No. 2509815. Applied: 31.07.2012. Published: 20.03.2014. Bulletin No. 8.
19. AO «CHELYABINSKII TSINKOVII ZAVOD». Einsatsgutzum Walzen vonzinkbleizinnhaltigen Materiallen. Patent DE, No. 202014008166. Introduced 17.09.2014. Published 03.11.2014.
20. Krekhov A. G., Gladyshev A. N., Dobrynin V. V., Sobolev V. I. et al. Utilization cauldron. Patent RF, No. 2266467. Applied: 23.07.2002. Published: 20.12.2005. Bulletin No. 35.
21. Kozlov P. A., Panshin A. M., Zatonskiy A. V., Reshetnikov Yu. V. et al. Method of waelz process of zinc cakes. Patent RF, No. 2496895. Applied: 22.09.2012. Published: 27.10.2013. Bulletin No. 30.
22. Kozlov P. A., Khodyko I. I., Poroshin E. A., Ivakin D. A. Use of petroleum coke in the waelz process. Tsvetnye Metally. 2019. No. 3. pp. 28–32. 23. Kazanbaev L. A., Kozlov P. A., Kubasov V. L., Kolesnikov A. V., Zagrebin S. A. Method for producing high-purity indium powder. Patent RF, No. 2218244. Applied: 05.04.2002. Published: 10.12.2003. Bulletin No. 34.
24. Kozlov P. A., Yakornov S. A., Panshin A. M., Izbrekht P. A. et al. Charge for waxing zinc containing materials. Patent RF, No. 2659513. Applied: 01.09.2017. Published: 02.07.2018. Bulletin No. 19.
25. Degtyarev A. M., Ivakin D. A., Shumilin Yu. P., Mayorov S. P. Mastering of technology of waelz-oxide calcination in pipe rotary furnace. Tsvetnye Metally. 2015. No. 5. pp. 31–35.
26. Panshin A. M., Reshetnikov Yu. V., Ivakin D. A., Geraskin V. V. Research and development of hydrometallurgical processing stage in copper industry wastes' recycling technology with tin recovery into tin concentrate. Tsvetnye Metally. 2015. No. 5. pp. 46–50.
27. Kozlov P. A., Yakornov S. A., Panshin A. M., Izbrekht P. A. et al. Method of processing zinc-containing dust of electric arc furnaces. Patent RF, No. 2653394. Applied: 23.03.2017. Published: 08.05.2018. Bulletin No. 13.
28. Kozlov P. A., Yakornov S. A., Panshin A. M., Izbrekht P. A. et al. Method for producing a zinc powder from zinc-containing wastes. Patent RF, No. 2663918. Applied: 01.09.2017. Published: 13.08.2018. Bulletin No. 23.
29. Kozlov P. A., Panshin A. M., Yakornov S. A. Research and Development of Pyrohydrometallurgical Technology of Ferrous Dust Treatment with Zinc Powder Production. EMC 2019. Dusseldorf, Germany, 23–26 June 2019.
30. Patrushev A. V., Ostanina T. N., Rudoy V. M., Vereshchagina A. V. et al. Selecting the environment for the production of electrolytic zinc powder for metal-filled compositions. Proceedings of the conference “Chemistry in Federal Universities”. Yekaterinburg, 2013. pp. 124–128.

Language of full-text russian
Full content Buy
Back