Journals →  Non-ferrous Metals →  2020 →  #1 →  Back

LIGHT METALS, CARBON MATERIALS
ArticleName An update on inert anodes for aluminium electrolysis
DOI 10.17580/nfm.2020.01.03
ArticleAuthor Yasinskiy A. S., Padamata S. K., Polyakov P. V., Shabanov A. V.
ArticleAuthorData

Laboratory of Physics and Chemistry of Metallurgical Processes and Materials, Siberian Federal University, Krasnoyarsk, Russia:

A. S. Yasinskiy, Assistant Prof., Head of the Laboratory, e-mail: ayainskiykrsk@gmail.com
S. K. Padamata, PhD Candidate, Junior Researcher, e-mail: saikrishnapadamata17@gmail.com
P. V. Polyakov, Professor, Leading Researcher, e-mail: p.v.polyakov@mail.ru

 

Laboratory of Molecular Spectroscopy, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russia:
A. V. Shabanov, Senior Researcher, e-mail: alexch_syb@mail.ru

Abstract

This update includes the literature related to the inert anodes which were published in the past decade. The metallic anodes are widely regarded as promising candidates to replace the carbon anodes due to its attractive properties like good electrical conductivity, easy to manufacture and high resistance to high thermal shocks. The metals have been tested in pure state and alloy (binary, ternary) form. The oxide scale formed on the anode surface acts as a barrier between the electrolyte and the anode, which protects the anode from being dissolved. The layer of molten fluorides is formed between the scale and the metal anode after a certain time of polarization, and the oxide scale acts as a bipolar electrode. Metal like Cu is reduced at the internal side of the scale. This paper elaborates the effects of various parameters on the performance of the anode. Cu-based alloys (Cu – Ni – Fe and Cu – Al) have shown promising results and could perform well in low-temperature electrolytes. It has been well established that the Cu content in Cu – Ni – Fe and Cu – Al alloys plays a major role in the metal dissolution as the CuO/Cu2O scales formed on the outer layer act as a sacrificial one. The corrosion rate of an anode can be reduced by decreasing the operating temperature, which is possible by using the KF – AlF3 melts. The use of suspensions can increase the purity of the produced metal by stopping the anode products to come in contact with cathode metal. Many industries including RUSAL and ELYSIS are still conducting a considerable amount of research to develop an inert anode and are expecting to have a carbon-free cell in the nearest future.

The work is performed as a part of the state assignment for the science of Siberian Federal University, project number FSRZ-2020-0013. Use of equipment of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” is acknowledged.

keywords Inert anodes, aluminium electrolysis, CO2 emission, metallic anode, cermet anode, ceramic anode, oxygenevolving electrode, fluoride melt, corrosion, oxidation, low-temperature electrolyte, Hall-Heroult cell
References

1. Kvande H., Haupin W. Inert Anodes for Al Smelters: Energy Balances and Environmental Impact. JOM. 2001. Vol. 53, Iss. 5. pp. 29–33.
2. Haraldsson J., Johansson M. T. Review of Measures for Improved Energy Efficiency in Production-Related Processes in the Aluminium Industry – from Electrolysis to Recycling. Renewable and Sustainable Energy Reviews. 2018. Vol. 93. pp. 525–548.
3. Solheim A. Inert Anodes — the Blind Alley to Environmental Friendliness? Minerals, Metals and Materials Series: Light metals. 2018. pp. 1253–1260.
4. Padamata S. K., Yasinskiy A. S, Polyakov P. V. Progress of Inert Anodes in Aluminiu m Industry: Review. Journal of Siberian Federal University: Chemistry. 2018. Vol. 11, Iss. 1. pp. 18–30.
5. Pawlek R. P. Inert Anodes for the Primary Alu minium Industry: an Update. TMS Light Metals. 1996. pp. 243–248.
6. Pawlek R. P. Inert Anodes: an Update. TMS Light Metals. 2002. pp. 449–456.
7. Pawlek R. P. Inert Anodes: an Update. TMS Light Metals. 2004. pp. 283–287.
8. Pawlek R. P. Inert Anodes: an Update. TMS Light Metals. 2008. pp. 1039–1045.
9. Pawlek R. P. Inert Anodes: an Update. TMS Light Metals. 2014. pp. 1309–1313.
10. Galasiu I., Galasiu R., Thonstad J. Inert Anodes for Aluminium Electrolysis. Düsseldorf: Aluminium-Verlag, 2007. 212 p.
11. Glucina M., Hyland M. Laboratory-Sca le Performance of a Binary Cu–Al Alloy as an Anode for Aluminium Electrowinning. Corrosion Science. 2006. Vol. 48, Iss. 4. pp. 2457–2469.
12. Keller R., Rolseth S., Thonstad J. Mass Transport Considerations for the Development of Oxygen-Evolving Anodes in Aluminum Electrolysis. Electrochimica Acta. 1997. Vol. 42, Iss. 12. pp. 1809–1817.
13. Antipov E. V., Borzenko A. G., Denisov V. M., Filatov A. Yu., Ivanov V. V., Kazakov S. M., Mazin P. M., Mazin V. M., Shtanov V. I., Simakov D. A., Tsirlina G. A., Vassiliev S. Yu., Velikodny Yu. A. Electrochemical Behavior of Metals and Binary Al loys in Cryolite-Alumina Melts. TMS Light Metals. 2006. pp. 403–408.
14. Oudot M., Cassayre L., Chamelot P., Gibilaro M., Massot L., Pijolat M., Bouvet S. Layer Growth Mechanisms on
Metallic Electrodes Under Anodic Polarization in Cryolite-Alumina Melt. Corrosion Science. 2014. Vol 79. pp. 159–168.
15. Padamata S. K., Yasin skiy A. S., P olyakov P. V. Electrode Pr ocesses in KF–AlF3–Al2O3 Melts. New Journal of Chemistry. 2020. Vol. 44, Iss. 13. pp. 5152–5164.

16. Khramov A. P., Kovrov V. A., Zaikov Yu. P, Chumarev V. M. Anodic Behaviour of the Cu82Al8Ni5Fe5 Alloy in Low-Temperature Aluminium Electrolysis. Corrosion Science. 2013. Vol 70. pp. 194–202.
17. Suzdaltsev A., Khramov A., Kovrov V., Limanovskaya O., Nekrasov V., Zaikov Y. Voltammetric and chronopotentiometric study of nonstationary processes at the oxygen-evolving anodes in KF – NaF – AlF3 – Al2O3 melt. Materials Science Forum. 2016. Vol. 884. pp. 19–26.
18. Tang D., Zheng K., Yin H., Mao X., Sadoway D. R., Wang D. Electrochemical Growth of a Corrosion-Resistant Multi-Layer Scale to Enable an Oxygen-Evolution Inert Anode in Molten Carbonate. Electrochimica Acta. 2018. Vol. 279. pp. 250–257.
19. Ndong G. K., Xu e J., Feng L., Zhu J. Effect of Anodic Polarization on Layer-Growth of Fe – Ni – Cr Anodes in Cryolite-Alumina Melts. TMS 6th International Symposium on High-Temperature Metallurgical Processing. 2015. pp. 83–90.
20. Meyer P., Massot L., Gibilaro M., Bouvet S., Laurent V., Marmottant A., Chamelot P. Electrochemical Degradation Mechanism of a Cermet Anode for Aluminum Production. Materials Sciences and Applications. 2019, Vol. 10. pp. 614–629
21. Meyer P., Gibilaro M., Mass ot L., Pasquet I., Tailhades P., Bouvet S., Chamelot P. Comparative Study on the Chemical Stability of Fe3O4 and NiFe2O4 in Molten Salts. Materials Science and Engineering: B. 2019. Vol. 228. pp. 117–122.
22. Cao D., Shi Z., Shi D., X u J., Hu X., Wang Z. Electrochemical Oxidation of Fe – Ni Alloys in Cryolite–Alumina Molten Salts at High Temperature. Journal of the Electrochemical Society. 2019. Vol. 166, Iss. 4. pp. E87–E96.
23. Cao D., Ma J., Shi Z., Shi D., Xu J., Hu X., Wang Z. Corrosion Behavior of Fe – Ni Alloys in Molten KF – AlF3 – Al2O3 Salts at 700 oC. Corrosion Science. 2017. Vol. 156. pp. 32–43.
24. Huang Y., Yang Y., Zhu L., Li u F., Wang Z., Gao B., Shi Z., Hu X. Electro chemical Behavior of Fe – Ni Alloys as an Inert Anode for Aluminum Electrolysis. International Journal of Electrochemical Science. 2019. Vol. 14. pp. 6325–6336.
25. Guan P., Aimin Liu A., Shi Z., Hu X., Wang Z. Corrosion Behavior of Fe – Ni – Al Alloy Inert Anode in Cryolite Melts. Metals. 2019. Vol. 9, Iss 4. DOI: 10.3390/met9040399.
26. Gavrilova E., Goupil G., Davis B., Guay D., Roué L. On the Key Role of Cu on the Oxidation Behavior of Cu – Ni – Fe Based Anodes for Al Electrolysis. Corrosion Science. 2015. Vol. 101. pp. 105–113.
27. Goupil G., Helle S., Davis B., Guay D., Roué L. Anodic Behavior of Mechanically Alloyed Cu – Ni – Fe And Cu – Ni – Fe – O Electrodes for Aluminum Electrolysis in Low-Temperature KF–AlF3 Electrolyte. Electrochimica Acta. 2013. Vol. 112. pp. 176–182.
28. Goupil G., Bonnefont G., Idrissi H., Guay D., Roué L. Consolidation of Mechanically Alloyed Cu – Ni – Fe Material by Spark Plasma Sintering and Evaluation as Inert Anode for Aluminum Electrolysis. Journal of alloys and compounds. 2013. Vol. 580. pp. 256–261.
29. Beck T. R., Macrae C. M., Wilson N. C. Metal Anode Performance in Low-Temperature Electrolytes for Aluminum Production. Metallurgical And Materials Transactions B. 2011. Vol. 42, Iss. 4. pp. 807–813.
30. Goupil G., Helle S., Irissou E., Poirier D., Legoux J. G., Guay D., Roué L. Cold Spray Deposition of Mechanically Alloyed Cu – Ni – Fe Material for Application as Inert Anodes for Aluminum Production. Light Metals. 2013. pp. 1283–1287.
31. Goupil G., Jucke n S., Poirier D., Legoux J. G., Irissou E., Davis B., Guay D., Roue L. Cold Sprayed Cu – Ni – Fe Anode for Al Production. Corrosion Science. 2015. Vol. 90. pp. 259–265.
32. Jucken S., Martin M. H., Irissou E., Davis B., Guay D., and Roue L. Cold-Sprayed Cu – Ni – Fe Anodes for CO2-free Aluminum Prod uction. Journal of Thermal Spray Technology. 2020. Vol. 29, Iss. 4. pp. 670–683.
33. Ying L., Yong Z., Wei W., Dongsheng L., Junyi M., Juan D. The Effect of La on the Oxidation and Corrosion Resistance of Cu52Ni30Fe18 Alloy Inert Anode for Aluminum Electrolysis. Arabian Journal for Science and Engineering. 2018. Vol. 43, Iss. 11. pp. 6285–6295.
34. Gunnarsson G, Óskarsdóttir G., Frostason S., Magnússon J. H. Al uminum Electrolysis with Multiple Vertical Non-Consumable Electrodes in a Low Temperature Electrolyte. Minerals, Metals and Materials Series: Light metals. 2019. pp. 803– 810.
35. He H.-B., Xiao H.-N., Zhou K.-Ch. Effect of Additive BaO on Corrosi on Resistance of xCu/(10NiO-NiFe2O4) Cermet Inert anodes for aluminum electrolysis. Transactions of Nonferrous Metals Society of China. 2011. Vol. 21. pp. 102–108.
36. Gallino I., Kassner M. E., Busch R. Oxidation and Corrosion of Highl y alloyed Cu – Fe – Ni as Inert Anode Material for Aluminum Electrowinning in as-Cast and Homogenized Conditions. Corrosion Science. 2012. Vol. 63. pp. 293–303.
37. Jucken S., Tougas B., Davis B., Guay D., Roué L. Study of Cu – Ni – Fe Allo ys as Inert Anodes for Al Production in Low-Temperature KF – AlF3 Electrolyte. Metallurgical And Materials Transactions B. 2019. Vol. 50, Iss. 6. pp. 3103–3111.
38. Jucken S., Schaal E., Tougas B., Davis B., Guay D., Roué L. Impact of a Post- Casting Homogenization Treatment on the High-Temperature Oxidation Resistance of a Cu – Ni – Fe alloy Corrosion Science. 2019. Vol. 147. pp. 321–329.
39. Chapman V., Welch B. J., Skyllas-Kazacos M. Anodic Behaviour of Oxidised Ni – Fe A lloys in Cryolite–Alumina Melts. Electrochimica Acta. 2011. Vol. 56, Iss. 3. pp. 1227–1238.
40. Chapman V., Welch B. J., Skyllas-Kazacos M. High Temperature Oxidation Behavio ur of Ni – Fe – Co Anodes for Aluminium Electrolysis. Corrosion Science. 2011. Vol. 53, Iss. 9. pp. 2815–2825.
41. Yasinskiy A. S., Padamata S. K., Polyakov P. V., Samoilo A. S., Suzdaltsev A. V., Niko laev A. Y. Electrochemical Behaviour of Cu – Al Oxygen-Evolving Anodes in Low-Temperature Fluoride Melts and Suspensions. Minerals, Metals and Materials Series: Light metals. 2020. pp. 591–599.
42. Padamata S. K., Yasinskiy A. S., Polyakov P. V. Anodic Process on Cu-Al Alloy in KF – AlF3 – Al2O3 Melts and Suspensions. Transactions of Nonferrous Metals Society of China. 2020. (In press)
43. Yasinskiy A. S., Padamata S. K., Polyakov P. V., Vinogradov O. O. Anodic process on alumi nium bronze in low-temperature cryolite-alumina melts and suspensions. Tsvetnye Metally. 2019. No. 9. pp. 42–49. DOI: 10.17580/tsm.2019.09.07
44. Hryn J., Tkacheva O., Spangenberger J. Initial 1000A Aluminum Electrolysis Testing in Pota ssium Cryolite-Based Electrolyte. TMS Light Metals. 2013. pp. 1289–1294.
45. Liu C., Ji X., Zhang P., Chena Q., Banks C. E. An Oxygen Pumping Anode for Electrowinning A luminium. Physical Chemistry Chemical Physics. 2013. Vol. 15, Iss. 17. pp. 6350–6354.
46. Xiao S., Mokkelbost T., Paulsen O., Ratvik A. P., Haarberg G. M. SnO2-Based Gas (Hydrogen) A nodes for Aluminum Electrolysis. Transactions of Nonferrous Metals Society of China. 2014. Vol. 24, Iss. 12. pp. 3917–3921.
47. Constantin V. Influence of the Operating Parameters Over the Current Efficiency and Corrosion Rate in the Hall–Heroult Aluminum Cell With Tin Oxide Anode Substrate Material. Chinese Journal of Chemical Engineering. 2015. Vol. 23, Iss. 4. pp. 722–726.
48. Tian Z., Guo W., Lai Y., Zhang K., Li J. Effect of Sintering Atmosphere on Corrosion Resistance of Ni/(NiFe2O4–10NiO) Cermet Inert Anode for Aluminum Electrolysis. Transactions of Nonferrous Metals Society of China. 2016. Vol. 26, Iss. 11. pp. 2925–2929.
49. Yang W.-J., Guo J., Li J., Zhang G., He L.-Q., Zhou K.-Ch. A Self-Repairing Cermet Anode: Preparation and Corrosion Behavior of (Cu – Ni – Fe)/NiFe2O4 Cermet with Synergistic Action. Journal of the American Ceramic Society. 2016. Vol. 100, Iss. 3. pp. 887–893.
50. Wang B., Du J., Liu Y., Fang Z., Hu P. Effect of TiO2 Addition on Grain Growth, Anodic Bubble Evolut ion and Anodic Overvoltage of NiFe2O4-Based Composite Inert Anodes. Journal of Materials Engineering and Performance. 2017. Vol. 26, Iss. 11. pp. 5610–5619.
51. Wu X., Zhu W., Luo K., Wu S. Production of NiFe2O4 Nanocermet for Aluminium Inert Anode. TMS Light Metals. 2017. pp. 1357–1364.
52. Liu Y., Zhang Y., Wang W., Li D., Ma J. Microstructure and Electrolysis Behavior of Self-Healing Cu – Ni – Fe Composite Inert Anodes for Aluminum Electrowinning. International Journal of Minerals, Metallurgy and Materials. 2018. Vol. 25, Iss. 10. pp. 1208–1216.
53. Yang W.-J., Wang Y., Zhai H.-F., Fan J. Effect of NiO Addition on the High-Temperature Oxidation and Corrosion Behaviors of Fe – Ni Alloy as Inert Anode Material for Aluminum Electrolysis. Journal of Materials Science. 2020. Vol. 55, Iss. 9. pp. 4065–4072.
54. Mohammadkhani S., Schaal E., Dolatabadi A., Moreau C., Davis B., Guay D., Roué L. Synthesis and Thermal Stability of (Co,Ni)O Solid Solutions. Journal of the American Ceramic Society. 2019. Vol. 102, Iss. 9. pp. 5063–5070.
55. Pasquet I., Baco-Carles V., Chamelot P., Gibilaro M., Massot L., Tailhades Ph. A Multimaterial Based on Metallic Copper and Spinel Oxide Made by Powder Bed Laser Fusion: a New Nanostructured Material for Inert Anode Dedicated to Aluminum Electrolysis. Journal of Materials Processing Technology. 2020. Vol. 278. 116452. DOI: 10.1016/j.jmatprotec.2019.116452
56. Mann V., Buzunov V., Pingin V., Zherdev A., Grigoriev V. Environmental Aspects of UC RUSAL’s Aluminum Smelters Sustainable Development. Minerals, Metals and Materials Series: Light metals. 2019. pp. 553–563.
57. Gupta A., Basu B. Sustainable Primary Aluminium Production: Technology Status and Future Opportunities. Transact ions of the Indian Institute of Metals. 2019. Vol. 72, Iss. 8. pp. 2135–2150.
58. Padamata S. K., Yasinskiy A. S., Polyakov P. V. Electrolytes and its Additives Used in Aluminium Reduction Cell: a Review. Metallurgical Research & Technology. 2019. Vol. 116, Iss. 4. 410. DOI: 10.1051/metal/2018136
59. Yasinskiy A., Suzdaltsev A., Padamata S. K., Polyakov P., Zaikov Y. Electrolysis of Low-Temperature Suspensions: an Update. Light metals. 2020. pp. 626–636.
60. Saevarsdottir G., Kvande H., Welch B. J. Reducing the Carbon Footprint: Aluminium Smelting with Changing Energy Sy stems and the Risk of Carbon Leakage. Light metals. 2020. pp. 726–734.
61. Saevarsdottir G., Kvande H., Welch B. J. Aluminum Production in the Times of Climate Change: The Global Challenge to Reduce the Carbon Footprint and Prevent Carbon Leakage. JOM. 2020. Vol. 72, Iss. 1. pp. 296–308.
62. Yin H., Mao X., Tang D., Xiao W., Xing L., Zhu H., Wang D., Sadoway D. R. Capture and Electrochemical Conversion of CO2 to Value-Added Carbon and Oxygen by Molten Salt Electrolysis. Energy & Environmental Science. 2013. Vol. 6, Iss. 5. pp. 1538–1545.

Full content An update on inert anodes for aluminium electrolysis
Back