Journals →  Non-ferrous Metals →  2020 →  #1 →  Back

METAL PROCESSING
ArticleName High-tech alloys based on Al – Ca – La(–Mn) eutectic system for casting, metal forming and selective laser melting
DOI 10.17580/nfm.2020.01.09
ArticleAuthor Akopyan T. K., Letyagin N. V., Avxentieva N. N.
ArticleAuthorData

National University of Science and Technology MISiS, Moscow, Russia:

T. K. Akopyan, Dr., Research Worker of Department of Metal Forming, e-mail: nemiroffandtor@yandex.ru
N.V. Letyagin, PhD, Engineer of Department of Metal Forming
N. N. Avxentieva, Senior Lecturer of the Department Mathematics

Abstract

Electron microscopy structure studies have shown that new Al3Ca2La(1–2)Mn system alloys have a fine hypoeutectic structure. The fine eutectic fibers are a few microns in length and less than one micron in thickness. EMPA shows that calcium and lanthanum are completely included in the eutectic, while manganese is distributed between the aluminum solid solution (Al) and the eutectic. The solubility of manganese in (Al) is about 1.7 wt.%. Addition of 2 wt.% Mn leads to a substantial increase in the yield strength and ultimate tensile strength of the base Al3Ca2La alloy whereas the ductility is not less than 5%. The yield strength of the quaternary alloy is about 175 MPa which is three times that of the base alloy. Due to the narrow solidification range and a high fraction of eutectic, new Al – (3–6)Ca – (2–4)La – (1–2)Mn alloys also have a lower hot tearing tendency comparable to that of the branded hypoeutectic and hypereutectic Al – Si alloys. The ball-milled experimental powder has been used for a preliminary analysis of the effect of selective laser melting on the as-built microstructure of the model hypereutectic alloy. No cracks and porosity have been observed, the microstructure consisting of very fine eutectic. The microhardness of the asprocessed alloy is about 170 HV which is comparable with the hardness of high-strength aluminum alloys. Thus, based on the analysis above, new alloys can be considered as promising for conventional casting and SLM technique instead of the widely used Al – Si alloys. The Al3Ca2La1Mn alloy has also been deformed by radial shear rolling. Hot rolling at 400 oC at a total pulling rate of μ = 8.16 has yielded high-quality 14 mm diameter rods. Microstructure analysis has shown that deformation leads to additional refining of eutectic crystals the average size of which is at a submicron level (300–500 nm). The combination of size of fine eutectic particles and their high volume fraction (~15%) allows reaching good mechanical properties, i.e., an ultimate strength of at least 230 MPa at a relative elongation of at least 15%. Thus the achieved combination of the properties of the new Al – Ca – La(–Mn) alloys allows classing them as high-tech materials suitable for advanced hybrid forming technologies.
The study was carried out with the financial support of the grant of the Russian Science Foundation (Project № 18-79-00345).

keywords Al-alloys, Al – Ca alloys, eutectic, casting, selective laser melting, radial shear rolling, microstructure, mechanical properties
References

1. Rao H., Giet S., Yang K., Wu X., Davies C. H. J. The Inuence of Processing Parameters on Aluminium Alloy A357 Manufactured by Selective Laser Melting. Materials & Design. 2016. Vol. 109. pp. 334–346.
2. Tang M., Pistorius P. C., Narra S., Beuth J. L. Rapid Solidication: Selective Laser Melting of AlSi10Mg. JOM. 2016. Vol. 68, Iss. 3. pp. 960–966.
3. Leon A., Aghion E. E ffect of Surface Roughness on Corrosion Fatigue Performance of AlSi10Mg Alloy Produced by Selective Laser Melting (SLM). Materials Characterization. 2017. Vol. 131. pp. 188–194.
4. Jing L., Xu C., Zhuo L., Xiao Z., Shu-Quan Z., Hua-Ming W. Improving the Mechanical Properties of Al – 5Si –1Cu – Mg Aluminum Alloy Produced by Laser Additive Manufacturing with Post-Process Heat Treatments. Materials Science and Engineering: A. 2018. Vol. 735. pp. 408–417.
5. Girelli L., Giovagnoli M., Tocci M., Pola A., Fortini A., Merlin M., La Vecchia M. Evaluation of the Impact Behaviour of AlSi10Mg Alloy Produced Using Laser Additive Manufacturing. Materials Science and Engineering: A. 2019. Vol. 748. pp. 38–51.
6. Blindheim J., Grong Ø., Welo T., Steinert M. On the Mechanical Integrity of AA6082 3D Structures Deposited by Hybrid Metal Extrusion & Bonding Additive Manufacturing. Journal of Materials Processing Technology. 2020. Vol. 282. 116684. DOI: 10.1016/j.jmatprotec.2020.116684
7. Xiang Qiu, Naeem ul Haq Tariq, Lu Qi, Ji-Qiang Wang, Tian-Ying Xiong. A Hybrid Approach to Improve Microstructure and Mechanical Properties of Cold Spray Additively Manufactured A380 Aluminum Composites. Materials Science and Engineering: A. 2020. Vol. 772. pp. 138828. DOI: 10.1016/j.msea.2019.138828
8. Belov N. A., Naumova E. A., Akopyan T. K., Doroshenko V. V. Phase Diagram of Al – Ca – Mg – Si System and Its Application for the Design of Aluminum Alloys with High Magnesium Content. Metals. 2017. Vol. 7, Iss. 10. pp. 429–445.
9. Jiang Y., Shi X., Bao X., He Y., Huang S., Wu D., Bai W., Liu L., Zhang L. Experimental Investigation and Thermodynamic Assessment of Al–Ca–Ni Ternary System. Journal of Materials Science. 2017. Vol. 52, Iss. 20. pp. 12409–12426.
10. Akopyan T. K., Letyagin N. V. Doroshenko V. V. Al – Ca – Ni – Ce-based aluminium matrix composites hardened with L12 phase nanoparticles without quenching. Tsvetnye Metally. 2018. No. 12. pp. 56–61. DOI: 10.17580/tsm.2018.12.08
11. Naumova E. A., Akopyan T. K., Letyagin N. V., Vasina M. A. Investigation of the Structure and Properties of Eutectic Alloys of the Al – Ca – Ni System Containing REM. Non-ferrous Metals. 2018. No. 2. pp. 24–29. DOI: 10.17580/nfm.2018.02.05
12. Belov N. A., Naumova E. A., Alabin A. N. Matveeva I. A. Effect of Scandium on Structure and Hardening of Al–Ca Eutectic Alloys. Journal of Alloys and Compounds. 2015. Vol. 646. pp. 741–747.
13. Belov N. A., Akopyan T. K., Mishurov S. S., Korotko va N. O. Effect of Fe and Si on the Microstructure and Phase Composition of the Aluminum-Calcium Eutectic Alloys. Non-ferrous Metals. 2017. No. 2. pp. 37–42. DOI: 10.17580/nfm.2017.02.07
14. Belov N. A., Naumova E. A., Akopyan T. K., Doroshenko V. V. Phase Diagram of the Al–Ca–Fe–Si System and Its Application for the Design of Aluminum Matrix Composites. JOM. 2018. Vol. 70, Iss. 11. pp. 2710–2715.
15. Shurkin P. K., Dolbachev A. P., Naumova E. A., Doroshenko V. V. Effect of Iron on the Structure, Hardening and Physical Properties of the Alloys of the Al – Zn – Mg – Ca System. Tsvetnye Metally. 2018. No. 5. pp. 69–77. DOI: 10.17580/tsm.2018.05.10
16. Akopyan T. K., Letyagin N. V., Belov N. A., Shurkin P. K. New Eutectic Type Al Alloys Based on the Al – Ca – La(–Zr, Sc) System. Materials Today: Proceedings. 2019. Vol. 19. pp. 2009–2012.
17. Hatch J. E. Aluminum: Properties and Physical Metallurgy. American Society for Metals: Ohio, USA, 1984. 363 p.

18. Polmear I. J. Light Alloys From Traditional Alloys to Nanocrystals. Fourth edition. Butterworth-Heinemann. Elsevier: Oxford, UK. 2006. 421 p.
19. Belov N. A., Eskin D. G., Askenov A. A. Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys. Elsevier Ltd, Oxford. 2005. 424 p.
20. De Haan P. C. M., Rijkom J. V., Söntgerath J. A. H. The Precipitation Behaviour of High-Purity Al–Mn Alloys. Materials Science Forum. 1996. Vol. 217–222. pp. 765–770.
21. Merchant H. D., Morris J. G., Hodgson D. S. Characterization of Intermetallics in Aluminum Alloy 3004. Materials Characterization. 1990. Vol. 25, Iss. 4. pp. 339–373.
22. Li Y. J., Arnberg L. Quantitative Study on the Precipitation Behavior of Dispersoids in DC-Cast AA3003 Alloy During Heating and Homogenization. Acta Materialia. 2003. Vol. 51, Iss. 12. pp. 3415–3428.
23. Goel D. B., Roorkee U. P., Furrer P., Warlimont H. Precipitation in Aluminum Manganese (Iron, Copper) Alloys. Aluminium. 1974. Vol. 50. pp. 511–516.
24. Nicol A. D. I. The Structure of MnAl6. Acta Crystallographica. 1953. Vol. 6., Iss. 3. pp. 285–293.
25. Alexander D. T. L., Greer A. L. Solid-State Intermetallic Phase Transformations in 3XXX Aluminium Alloys. Acta Materialia. 2002. Vol. 50, Iss. 10. pp. 2571–2583.
26. Galkin S. P. Regulating Radial-Shear and Screw Rolling on the Basis of the Metal Trajectory. Steel in Translation. 2004. Vol. 34, Iss. 7. pp. 57–60.
27. Diez M., Kim H.-E., Serebryany V., Dobatkin S., Estrin Y. Improving the Mechanical Properties of Pure Magnesium by Three-Roll Planetary Milling. Materials Science and Engineering: A. 2014. Vol. 612. pp. 287–292.
28. Stefanik A., Morel A., Mróz S., Szota Р. Theoretical and Experimental Analysis of Aluminium Bars Rolling Process in Three-High Skew Rolling Mill. Archives of Metallurgy and Materials. 2015. Vol. 60, Iss. 2. pp. 809-813.
29. Lopatin N. V., Salishchev G. A., Galkin S. P. Mathematical Modeling of Radial-Shear Rolling of the VT6 Titanium Alloy under Conditions of Formation of a Globular Structure. Russian Journal of Non-Ferrous Metals. 2011. Vol. 52, Iss. 5. pp. 442–447.
30. Lu K. Making Strong Nanomaterials Ductile with Gradients. Science. 2014. Vol. 345. pp. 1455–1456.
31. Akopyan T. K., Belov N. A., Aleshchenko A. S., Galkin S. P., Gamin Y. V., Gorshenkov M. V., Cheverikin V. V., Shurkin P. K. Formation of the Gradient Microstructure of a New Al Alloy Based on the Al – Zn – Mg – Fe – Ni System Processed by Radial-Shear Rolling. Materials Science and Engineering: A. 2019. Vol. 746. pp. 134–144.
32. Glazoff M. V., Khvan A. V., Zolotorevsky V. S., Belov N. A., Dinsdale A. T. Casting Aluminum Alloys. Their Physical and Mechanical Metallurgy. Oxford, UK : Elsevier, 2019. 564 p.
33. Zhang Z., Chen D. L. Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites. Materials Science and Engineering: A. 2008. Vol. 483–484. pp. 148–152.
34. Dobatkin V. I., Elagin V. I., Fedorov V. M. Structure of Rapidly Solidified Aluminum Alloys. Advanced Performance Materials. 1995. Vol. 2, Iss. 1. pp. 89–98.
35. Lin Y., Mao S., Yan Z., Zhang Y., Wang L. The enhanced microhardness in a rapidly solidified Al alloy. Materials Science and Engineering: A. 2017. Vol. 692. pp. 182–191.
36. Reference Data for Thermodynamic Calculations. Available: http://www.thermocalc.com (accessed: 08.05.2020).

Full content High-tech alloys based on Al – Ca – La(–Mn) eutectic system for casting, metal forming and selective laser melting
Back