Journals →  Tsvetnye Metally →  2020 →  #7 →  Back

RARE METALS, SEMICONDUCTORS
ArticleName Physical and chemical properties of zeolitic catalysts activated with vanadium xerogel
DOI 10.17580/tsm.2020.07.04
ArticleAuthor Ussoltseva G. A., Baikonurova A. O., Markametova M. S., Nurzhanova S. B.
ArticleAuthorData

Satbayev University, Almaty, Republic of Kazakhstan:

G. A. Ussoltseva, Assistant Professor, Candidate of Technical Sciences, e-mail: nota-vesna@yandex.kz
A. O. Baikonurova, Professor, Doctor of Technical Sciences, e-mail: a.baikonurova@yandex.kz
M. S. Markametova, Leading Researcher, Doctor PhD

D. V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Almaty, Republic of Kazakhstan:

S. B. Nurzhanova, Leading Researcher, Candidate of Chemical Sciences

Abstract

This paper looks at ways to produce a nanocomposite catalyst by activation of aluminosilicates (zeolites) with vanadium xerogel. It also examines the properties of such catalyst. Vanadium xerogel can be used to activate zeolites due to its structural and chemical features. Xerogel has a lamellar structure and consists of vanadium pentoxide layers bonded together by water molecules, which is confirmed by the results of infrared spectroscopy and X-ray phase analysis. Aluminosilicate zeolite catalysts of the grades IK-17, KN-30 and KN-4 were used as stabilization matrices for vanadium xerogel nanoparticles. The bidispersed structure of the above catalysts is comprised of protonic zeolite-based elementoaluminosilicates ZSM–5 with an inert γ-Al2O3 carrier. The paper describes certain structural and catalytic properties of the above zeolites. A typical characteristic of zeolitic catalysts includes the ability to change the interplanar spacing depending on the cation size (vanadium in this case), which is also their most essential feature. The catalytic properties of zeolites can be characterized as multifunctional, which is confirmed by a variety of catalytic processes that can develop on them. The study that looked at the activity of the generated catalysts showed that nanocatalysts can be produced by changing the zeolite composition and the ratio between nanocompounds of vanadium and the zeolite carrier. The activity of such nanocatalysts during catalytic oxidation of methane rises and exceeds the one of commercial vanadium catalysts. The paper describes a technique to activate zeolitic catalysts by impregnating nanoparticles of vanadium xerogel into their matrix. This is a simple technique, and the resultant activated catalyst can potentially be used in organic catalysis.
This research study was funded under the Grant АР05134196 by the Ministry of Education and Science of the Republic of Kazakhstan.

keywords Catalyst, activation, vanadium xerogel, sol-gel method, nanomaterials, zeolite, structure, acid site
References

1. Ergozhin E. E., Akimbaeva A. M. Organomineral sorbents and polyfunctional systems built with natural aluminosilicates and carbonic minerals. Almaty : Print-S, 2007. 373 p.
2. Lipin V. A., Baymakov A. Yu., Kazakov V. G. Ways of improvement of technology of processing of alumosilicate raw materials on alumina and by-products. Tsvetnye Metally. 2014. No. 4. pp. 62–68.
3. Slinkin A. A., Klyachko A. L. The texture, electrophilic, acid-base and catalytic properties of modified zeolites of ZSM–5 type. Kinetika i kataliz. 1993. Vol. 34, No. 2. pp. 369–373.
4. Popov Yu. V., Mokhov V. M., Nebykov D. N., Budko I. I. Nanoparticles in catalysis: Production and utilization in hydrogenation and reduction reactions. Izvestiya VolgGTU. 2014. Vol. 12, No. 7. pp. 5–44.
5. Golubeva O. Yu. Effect of synthesis conditions on hydrothermal crystallization, textural characteristics and morphology of aluminum-magnesium montmorillonite. Microporous and Mesoporous Materials. 2016. Vol. 224. pp. 271–276.
6. Gerasin V. A., Antipov E. M., Karbushev V. V., Kulichikhin V. G. New approaches to the creation of hybrid polymer nanocomposites: structural materials for cutting-edge application. Uspekhi khimii. 2013. Vol. 82, No. 4. pp. 303–332.
7. Grigorieva A. V., Volkov V. V., Gudilin E. A., Tarasov A. B. et al. Understanding how vanadium oxide nanotubes get formed in the course of hydrothermal treatment. Proceedings of the 12th National Conference on Crystal Growth. Moscow, 2006. p. 404.
8. Berezina O. Ya., Vasiliev V. A., Vinichenko D. A. Application of the modified sol-gel method to synthesize vanadium dioxide films. Neorganicheskie materialy. 2011. Vol. 47, No. 3. pp. 330–335.
9. Peryshkov D. V., Grigoriev A. V., Semenenko D. A., Gudilin E. A. et al. How the production history influences the structural arrangement of components in vanadium pentoxide xerogels. Doklady Akademii nauk. Khimiya. 2006. Vol. 406, No. 2. pp. 203–208.
10. Liu G., Zhao Z. J., Wu T. F., Zeng L., Gong J. L. Nature of the active sites of VOx/Al2O3 catalysts for propane dehydrogenation. ACS Catalysis. 2016. Vol. 6. pp. 5207–5214.
11. Mariano R. M., Picciani P. H. S., Nunes R. C. R., Visconte L. L. Y. Preparation, structure, and properties of montmorillonite/cellulose II/natural rubber nanocomposites. Journal of Applied Polymer Science. 2011. Vol. 120, No. 1. pp. 458–465.
12. Akpan U. G., Hameed B. H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Applied Catalysis A: General. 2010. Vol. 375. pp. 1–11.
13. Aegerter M. A., Avellaneda C. O., Pawlicka A., Atik M. Electrochromism in Materials Prepared by the Sol-Gel Process. Journal of Sol-Gel Science and Technology. 1997. Vol. 8, No. 1–3. pp. 689–696.
14. Baykonurova A. O., Markametova M. S., Usoltseva G. A., Konyratbekova S. S. How the synthesis conditions influence the structure of vanadium xerogel. Estestvennye i tekhnicheskie nauki. 2019. No. 8. pp. 167–173.
15. Markametova М. S., Mishra B., Baykonurova A. O., Nurzhanova S. B. et al. Investigation of the Formation of Layered Nanostructure of Vanadium Xerogel. Journal of Nanomaterials. 2014. pp. 1–6.
16. Markametova М. S., Baykonurova A. O., Usoltseva G. A., Guseynova G. D. Synthesis of vanadium pentoxide xerogel: Process simulation. Proceedings of the National Academy of Sciences of the Republic of Kazakhstan. 2015. Iss. 2, No. 300. pp. 26–29.
17. Chen W., Peng J., Mai L. et al. Synthesis of vanadium oxide nanotubes from V2O5 sols. Materials Letters. 2004. Vol. 58. pp. 2275–2278.
18. Kharlamov A. I., Ushkalov L. N., Kirillova N. V., Fomenko V. V. A new method to produce a new type of vanadium oxide nanotubes. Reports of the National Academy of Sciences of Ukraine. 2007. No. 4. pp. 149–156.
19. Shishelova T. I., Sozinova T. V., Konovalova A. N. Practicum in spectroscopy. Water in minerals: Learner’s guide. Moscow : Akademiya estestvoznaniya, 2010. 88 p.
20. Livage J. Vanadium Pentoxide Gels. Chemistry of Materials. 1991. Vol. 3. pp. 578–593.
21. Pan M., Liu J., Zhong H., Wang S. et al. Raman study of phase transition in VO2 thin films. Journal of Crystal Growth. 2004. Vol. 268. pp. 178–183.
22. Fischer R. X., Baur W. H. Microporous and other Framework Materials with Zeolite-Type Structures. Berlin : Springer, 2006.
23. Baerlocher C., McCusker L. B., Olson D. H. Atlas of zeolite framework types. New York : Elsevier, 2007. 398 p.
24. Lei X., Jockusch S., Ottaviani M. F., Turro N. J. In situ EPR investigation of the addition of persistent benzyl radicals to acrylates on ZSM-5 zeolites. Direct spectroscopic detection of the initial steps in a supramolecular photopolymerization. Photochemical & Photobiological Sciences. 2003. Vol. 2. pp. 1095–1100.
25. Mikhailov M. N., Kustov L. M., Kazansky V. B. The state and reactivity of Pt6 particles in ZSM-5 zeolite. Catalysis Letters. 2008. Vol. 120, Ch. 1. pp. 113–115.
26. Stocker M. Gas phase catalysis by zeolites. Microporous and Mesoporous Materials. 2005. Vol. 82. pp. 257–292.
27. Lopatkin S. V., Stepanov V. G., Ione K. G. Effect of hydrogen on the transformation of a mixture of С6–С8 carbohydrates in the presence of Fe-bearing zeolite HZSM-5. Neftekhimiya. 2002. Vol. 42, No. 3. pp. 222–227.
28. Moysa R. M., Vasilina G. K., Zhubanov K. A. On the formation of acid sites in aromatization catalysts containing modified natural zeolites. Chemical Bulletin of Kazakh National University. 2009. No. 3. pp. 163–168.
29. Anshits A. G., Voskresenskaya E. N. Oxidizing condensation of methane as a new method in natural gas processing. Soros Educational Journal. 1999. No. 9. pp. 38–43.
30. Pinaeva L. G., Noskov A. S., Parmon V. N. Prospects for the direct catalytic conversion of methane into useful chemical products. Catalysis in Industry. 2017. No. 9. pp. 283–298.

Language of full-text russian
Full content Buy
Back