Journals →  Gornyi Zhurnal →  2020 →  #7 →  Back

GORNYI ZHURNAL’s 195th ANNIVERSARY
ArticleName Uranium nanoparticles in geochemical cycle at natural and manmade objects (International review)
DOI 10.17580/gzh.2020.07.08
ArticleAuthor Sanakulov K. S., Meretukov M. A.
ArticleAuthorData

K. S. Sanakulov, CEO, Navoi Mining and Metallurgical Combinat, Navoi, Uzbekistan
M. A. Meretukov, Research Adviser, Independent Expert, Professor, Doctor of Engineering Sciences, Prague, Czech Republic, mamerat@gmail.com

Abstract

Nanoparticulate uraninite is found in natural settings such as ore deposits, U-contaminated soils and sediments associated with such natural deposits, spent nuclear fuel waste repositories, and uranium processing plants. Nanoparticulate UO2 may act as a significant carrier of U (IV) in various environments, including emissions from coal-fired power plants, U mine sediments and systems that have undergone U bioremediation. Reduction of U(VI) and precipitation of nanoparticulate UO2 can result from both abiotic and biological processes. Abiotic reduction generally proceeds by heterogeneous reduction at Fe (II) sites on the surfaces of Fe (II)-bearing minerals including biotite, magnetite and green rust. Bacteria mediate the reduction of U (VI) to nanoparticulate UO2 by enzymatically controlled process. In this case U (VI) is used as the terminal electron acceptor during cell metabolism of dissimilatory metal reducing bacteria. Bacterially mediated reduction of uranyl in natural sediments indicates that U (IV) is dominantly present in the form of nanometer-sized particles of UO2, on the order of 2–10 nm in diameter. Similar sizes are typical of formation of a UO2 crystalline nanophase in reduction of U (VI) to U (IV) by green rust. Organic matter coating on biogenic, nanoparticles of UO2 produced by the reduction of aqueous U (VI) by Shewanella putrefaciens, which could potentially affect the surface reactivity of biogenic, nanoparticulate UO2. The case-study of Anaeromyxobacter bacteria show that uraninite particles formed in sediments by bacterial reduction are typically less than 2 nm, which impedes their stabilization and increases mobility in oil, sediments and water solutions. Another way for the mobilization of the uranium (IV) is colloids formation.

keywords Uranium, nanoparticles, uranite, colloids, soils, sediments, waste, bioreduction
References

1. Choppin G. R. The Role of Natural Organics in Radionuclide Migration in Natural Aquifer Systems. Radiochimica Acta. 1992. Vol. 58–59, Iss. 1. pp. 113–120.
2. Kim J.-I. The Chemical Behavior of Transuranium Elements and Barrier Functions in Natural Aquifer Systems. Symposium V – Scientific Basis for Nuclear Waste Management XVI. Cambridge : Cambridge University Press, 1992. Vol. 294. pp. 3–21
3. Utsunomiya S., Kersting A. B., Ewing R. C. Groundwater Nanoparticles in the Far-Field at the Nevada Test Site: Mechanism for Radionuclide Transport. Environmental Science & Technology. 2009. Vol. 43, Iss. 5. pp. 1293–1298.
4. Arnold T., Utsunomiya S., Geipel G., Ewing R. C., Baumann N., Brendler V. Adsorbed U(VI) Surface Species on Muscovite Identified by Laser Fluorescence Spectroscopy and Transmission Electron Microscopy. Environmental Science & Technology. 2006. Vol. 40, Iss. 15. pp. 4646–4652.
5. Ilton E. S., Haiduc A., Moses C. O., Heald S. M., Elbert D. C., Veblen D. R. Heterogeneous reduction of uranyl by micas: Crystal chemical and solution controls. Geochimica et Cosmochimica Acta. 2004. Vol. 68, Iss. 11. pp. 2417–2435.
6. Abdelouas A., Lutze W., Nuttall H. Uranium contamination in the 450 subsurface: characterization and remediation. Uranium: Mineralogy, Geochemistry, and the Environment. Washington, 1999. Vol. 38. pp. 433–474.
7. Casas I., de Pablo J., Giménez J., Torrero M. E., Bruno J. et al. The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions. Geochimica et Cosmochimica Acta. 1998. Vol. 62, Iss. 13. pp. 2223–2231.

8. Senko J. M., Mohamed Y., Dewers T. A., Krumholz L. R. Role for Fe(III) Minerals in Nitrate-Dependent Microbial U(IV) Oxidation. Environmental Science & Technology. 2005. Vol. 39, Iss. 8. pp. 2529–2536.
9. Ginder-Vogel M., Criddle C. S., Fendorf S. Thermodynamic Constraints on the Oxidation of Biogenic UO2 by Fe(III) (Hydr)oxides. Environmental Science & Technology. 2006. Vol. 40, Iss. 11. pp. 3544–3550.
10. Scott T. B., Allen G. C., Heard P. J., Randell M. G. Reduction of U(VI) to U(IV) on the surface of magnetite. Geochimica et Cosmochimica Acta. 2005. Vol. 69, Iss. 24. pp. 5639–5646.
11. O’Loughlin E. J., Kelly S. D., Cook R. E., Csencsits R., Kemner K. M. Reduction of Uranium(VI) by Mixed Iron(II)/Iron(III) Hydroxide (Green Rust): Formation of UO2 Nanoparticles. Environmental Science & Technology. 2003. Vol. 37, Iss. 4. pp. 721–727.
12. Beyenal H., Sani R. K., Peyton B. M., Dohnalkova A. C., Amonette J. E., Lewandowski Z. Uranium Immobilization by Sulfate-Reducing Biofilms. Environmental Science & Technology. 2004. Vol. 38, Iss. 7. pp. 2067–2074.
13. Lovley D. R., Phillips E. J. P., Gorby Yu. A., Landa E. R. Microbial reduction of uranium. Nature. 1991. Vol. 350. pp. 413–416.
14. Singer D. M., Farges F., Brown G. E. Biogenic nanoparticulate UO2: Synthesis, characterization, and factors affecting surface reactivity. Geochimica et Cosmochimica Acta. 2009. Vol. 73, Iss. 12. pp. 3593–3611.
15. Lovley D. R., Phillips E. J. Reduction of uranium by Desulfovibrio desulfuricans. Applied and Environmental Microbiology. 1992. Vol. 58, Iss. 3. pp. 850–856.
16. Rundle R. E., Baenziger N. C., Wilson A. S., McDonald R. A. The Structures of the Carbides, Nitrides and Oxides of Uranium. Journal of the American Chemical Society. 1948. Vol. 70, Iss. 1. pp. 99–105.
17. Markich S. J. Uranium Speciation a nd Bioavailability in Aquatic Systems: An Overview. The Scientific World Journal. 2002. Vol. 2. pp. 707–729.
18. Suzuki Y., Kelly S. D., Kemner K. M., Banfield J. F. Nanometre-size products of uranium bioreduction. Nature. 2002. Vol. 419. p. 134.
19. Boyanov M. I., O’Loughlin E. J., Roden E. E., Fein J. B., Kemner K. M. Adsorption of Fe(II) and U(VI) to car boxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS. Geochimica et Cosmochimica Acta. 2007. Vol. 71, Iss. 8. pp. 1898–1912.
20. Senko J. M., Kelly S. D., Dohnalkova A. C., McDonough J. T., Kemner K. M., Burgos W. D. The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV). Geochimica et Cosmochimica Acta. 2007. Vol. 71, Iss. 19. pp. 4644–4654.
21. Sani R. K., Peyton B. M., Dohnalkova A., Amonette J. E. Reoxidation of Reduced Uranium with Iron(III) (Hydr)Oxides under Sulfate-Reducing Conditions. Environmental Science & Technology. 2005. Vol. 39, Iss. 7. pp. 2059–2066.
22. Lloyd J. R., Renshaw J. C. Bioremediation of radioactive waste: radionuclide–microbe interactions in laboratory and field-scale studies. Current Opinion in Biotechnology. 2005. Vol. 16, Iss. 3. pp. 254–260.
23. Landa E. R. Microbial Biogeochemistry of Uranium Mill Tailings. Advances in Applied Microbiology. 2005. Vol. 57. pp. 113–130.
24. Wall J. D., Krumholz L. R. Uranium Reduction. Annual Review of Microbiology. 2006. Vol. 60. pp. 149–166.
25. Gadd G. M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. 2010. Vol. 156, Iss. 3. pp. 609–643.
26. Suzuki Y., Banfield J. Geomicrobiology of uranium. Uranium: Mineralogy, Geochemistry, and the Environment. 1999. Vol. 38. pp. 393–432.
27. Utsunomiya S., Kogawa M., Kamiishi E. Actinide nanoparticle research. Berlin : Springer, 2011. pp. 33–62.
28. Veeramani H., Scheinost A. C., Monsegue N., Qafoku N. P., Ravi Kukkadapu et al. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite. Environmental Science & Technology. 2013. Vol. 47, Iss. 5. pp. 2361−2369.
29. Boyanov M. I., Fletcher K. E., Kwon M. J., Xue Rui, O’Loughlin E. J. et al. Solution and Microbial Controls on the Formation of Reduced U(IV) Species. Environmental Science & Technology. 2011. Vol. 45, Iss. 19. pp. 8336–8344.
30. Marshall M. J., Dohnalkova A. C., Kennedy D. W., Plymale A. E., Thomas S. H. et al. Electron donor‐dependent radionuclide reduction and nanoparticle formation by Anaeromyxobacter dehalogenans strain 2CP‐C. Environmental Microbiology. 2009. Vol. 11, Iss. 2. pp. 534–543.
31. Dichristina T. J., Fredrickson J. K., Zachara J. M. Enzymology of Electron Transport: Energy Generation With Geochemical Consequences. Reviews in Mineralogy and Geochemistry. 2005. Vol. 59, Iss. 1. pp. 27–52.
32. Ehrlich H. L. Are gram‐positive bacteria capable of electron transfer across their cell wall without an externally available electron shuttle? Geobiology. 2008. Vol. 6, Iss. 3. pp. 220–224.
33. Milliken C. E., May H. D. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Applied Microbiology and Biotechnology. 2007. Vol. 73. pp. 1180–1189.
34. Xue Rui, Kwon M. J., O’Loughlin E. J., Dunham-Cheatham S., Fein J. B. et al. Bioreduction of Hydrogen Uranyl Phosphate: Mechanisms and U(IV) Products. Environmental Science & Technology. 2013. Vol. 47, Iss. 11. pp. 5668−5678.
35. Dunham-Cheatham S., Xue Rui, Bunker B., Menguy N., Hellmann R., Fein J. The effects of nonmetabolizing bacterial cells on the precipitation of U, Pb and Ca phosphates. Geochimica et Cosmochimica Acta. 2011. Vol. 75, Iss. 10. pp. 2828− 2847.
36. Liang Shi, Richardson D. J., Zheming Wang, Kerisit S. N., Rosso K. M. et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environmental Microbiology Reports. 2009. Vol. 1, Iss. 4. pp. 220−227.
37. Gorby Yu. A., Yanina S., McLean J. S., Rosso K. M., Moyles D. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS. 2006. Vol. 103, No. 30. pp. 11358−11363.
38. Reguera G., McCarthy K. D., Metha T., Nicoll J. S., Tuominen M. T., Lovley D. R. Extracellular electron transfer via microbial nanowires. Nature. 2005. Vol. 435, Iss. 7045. pp. 1098−1101.
39. Chunfang Cai, Hailiang Dong, Hongtao Li, Xinjian Xiao, Guanxi Ou, Chunming Zhang. Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China. Chemical Geology. 2007. Vol. 236, Iss. 1–2. pp. 167–179.
40. Maozhong Min, Huifang Xu, Jia Chen, Mostafa Fayek. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China. Ore Geology Reviews. 2005. Vol. 26, Iss. 3–4. pp. 198–206.
41. Reith F., Rogers S. L., McPhail D. C., Webb D. Biomineralization of Gold: Biofilms on Bacterioform Gold. Science. 2006. Vol. 313. pp. 233–236.
42. Ueno Y., Yamada K., Yoshida N. et al. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature. 2006. Vol. 440. pp. 516–519.
43. Yohey Suzuki, Hiroki Mukai, Toyoho Ishimura, Takaomi D. Yokoyama, Shuhei Sakata et al. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer. Scientific Reports. 2016. 22701. DOI: 10.1038/srep22701
44. Drever J. I. The Geochemistry of Natural Waters: Surface and Groundwater Environments. 3rd ed. Upper Saddle River : Prentice Hall, 1997. 436 p.
45. Finch R., Murakami T. Systematics and paragenesis of uranium minerals. Uranium: Mineralogy, Geochemistry, and the Environment. 1999. Vol. 38. pp. 91–179.
46. Deditius A., Utsunomiya S., Ewing R. The chemical stability of coffinite, USiO4·nH2O; 0<n<2, associated with organic matter: A case study from Grants uranium region, New Mexico, USA. Chemical Geology. 2008. Vol. 251, Iss. 1-4. pp. 33–49.
47. Deditius A., Utsunomiya S., Pointeau V., Ewing R. Precipitation and alteration of coffinite in the presence of apatite. Eur. J. Mineral. 2010. Vol. 22. pp. 75–88.
48. Deditius A. P., Utsunomiya S., Wall M. A., Pointeau V., Ewing R. C. Crystal chemistry and radiationinduced amorphization of P-coffinite from the natural fission reactor at Bangombé, Gabon. American Mineralogist. 2009. Vol. 94, Iss. 5-6. pp. 827–837.
49. Allard T., Ildefonse P., Beaucaire C., Calas G. Struct ural chemistry of uranium associated with Si, Al, Fe gels in a granitic uranium mine. Chemical Geology. 1999. Vol. 158, Iss. 1-2. pp. 81–103.
50. Fuchs S., Schumann D., Williams-Jones A. E., Vali H. The growt h and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chemical Geology. 2015. Vol. 393-394. pp. 55–66.
51. Riegler T., Beaufort M.-F., Allard T., Pierson-Wickmann A.-C., Beaufort D. Nanoscale relationships between uranium and carbonaceous material in alteration halos around unconformity-related uranium deposits of the Kiggavik camp, Paleoproterozoic Thelon Basin, Nunavut, Canada. Ore Geology Reviews. 2016. Vol. 79. pp. 382–391.
52. Fuchs S., Schumann D., Williams-Jones A. E., Vali H. The growth and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chemical Geology. 2015. Vol. 393-394. pp. 55–66.
53. McKinley J. P., Zachara J. M., Chongxuan Liu, Heald S. C., Prenitzer B. I., Kempshall B. W. Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford Site, Washington. Geochimica et Cosmochimica Acta. 2006. Vol. 70, Iss. 8. pp. 1873–1887.
54. McCarthy J. F., Zachara J. M. Subsurface transport of contaminants. Environmental Science & Technology. 1989. Vol. 23, Iss. 5. pp. 496–502.
55. Kim J. I. Actinide Colloids in Natural Aquifer Systems. MRS Bulletin. 1994. Vol. 19, Iss. 12. pp. 47–53.
56. Dreissig I., Weiss S., Hennig C., Bernhard G., Zänker H. Formation of ura nium(IV)-silica colloids at near-neutral pH. Geochimica et Co smochimica Acta. 2011. Vol. 75, Iss. 2. pp. 352–367.
57. Yuheng Wang, Manon Frutschi, Suvorova E., Vannapha Phrommavanh, Descostes M. et al. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nature Communications. 2013. Vol. 4. 2942. DOI: 10.1038/ncomms3942
58. Bots P., Morris K., Hibberd R., Law G. T. W., Frederick W., Mosselmans J. F. W. et al. Formation of Stable Uranium(VI) Colloidal Nanoparticles in Conditions Relevant to Radioactive Waste Disposal. Langmuir: the ACS Journal of Surfaces and Colloids. 2014. Vol. 30, Iss. 48. pp. 14396−14405.
59. Utsunomiya S., Ewing R. C. Application of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy, Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission Electron Microscopy to the Characterization of Nanoparticles in the Environment. Environmental Science & Technology. 2003. Vol. 37, Iss. 4. pp. 786–791.
60. Utsunomiya S., Jensen K. A., Keeler G. J., Ewing R. C. Direct Identification of Trace Metals in Fine and Ultrafine Particles in the Detroit Urban Atmosphere. Environmental Science & Technology. 2004. Vol. 38, Iss. 8. pp. 2289–2297.

Language of full-text russian
Full content Buy
Back