Journals →  Tsvetnye Metally →  2020 →  #9 →  Back

SAINT-PETERSBURG SCIENCE SCHOOL OF PYRO- AND HYDROMETALLURGY
HYDROMETALLURGY
ArticleName High-temperature pressure oxidation of double refractory ore
DOI 10.17580/tsm.2020.09.11
ArticleAuthor Fomenko I. V., Pleshkov M. A., Lyakh S. I., Laevskiy S. I.
ArticleAuthorData

SRC Hydrometallurgy (LLC), Saint Petersburg, Russia:

I. V. Fomenko, General Director, Сandidate of Technical Sciences, e-mail: fomenko-i@gidrometall.ru
M. A. Pleshkov, Principal Researcher, Сandidate of Сhemical Sciences, e-mail: pleshkov-m@gidrometall.ru
S. I. Lyakh, Chief Engineer, Сandidate of Technical Sciences, e-mail: lyakh-s@gidrometall.ru
S. I. Laevskiy, Junior Researcher, e-mail: laevskiy-s@gidrometall.ru

Abstract

This paper shows the results of laboratory tests of autoclave oxidation of double-refractory flotation concentrates. The presence of organic carbon (0,7–2,6%), which has a high sorption activity in relation to gold complexes is the main processing problem. Gold recovery from the autoclave oxidation cakes of such materials at a temperature of 200–225 oC does not exceed 80–90%. High temperatures (225–250 oC) and the duration of the material's residence time in the autoclave can influence the indicators of the process. Gold recovery from carbonaceous concentrates depends on the amount of organic carbon oxidized and removed to the vent gas in the form of carbon dioxide. Carbon oxidation process goes simultaneously at a low rate with the destruction of sulfides. The active phase of organic carbon oxidation occurs after the oxidation of sulfides when redox potential in a solution reaches about 530–540 mV. It is shown that organic carbon oxidation requires several hours of slurry residence time in the autoclave at operating parameters after the oxidation of sulfides (>99%). The optimal duration of overoxidation depends on the content and sorption activity of carbon in the material and the operating temperature. The almost full elimination of organic carbon is required to increase the gold recovery up to 96–98% from the tested concentrates. Concentrates with carbon content up to 1,5% must be overoxidized for 30–60 minutes, with content of 1,5–3,0% – for about 120 minutes at a temperature of 250 oC. Reducing the operating temperature in the autoclave by 10–25 oC leads to increase in overoxidation period by 1,5–2 times. The authors would like to thank the leadership of the Petropavlovsk Group for the possibility to carry out this research study and publish the findings.

keywords Autoclave oxidation, double refractory, gold, organic carbon, preg-robbing, temperature, residence time in the autoclave, overoxidation
References

1. Miller J. D., Wan R., Diaz X. Preg-robbing gold ores. Developments in Mineral Processing. 2005. Vol. 15. pp. 937–972.
2. Polyus Gold International. Annual Report 2013. Available at: http://www.polyusgold.com/upload/investors/annual_reports/pgil-ar-2013-final.pdf (Accessed: 15.09.2020).
3. Polymetal International PLC. Annual Report 2013. Polymetal International PLC. Available at: http://www.polymetalinternational.com/investors-and-media/annual-reports.aspx?sc_lang=en (Accessed: 15.09.2020).
4. Samokhvalova A. R. Processing of refractory ores and cost-effectiveness. Gold and Technology: Conference proceedings. Moscow, 2014. pp. 6–8.
5. Chryssoulis S. L., McMullen J. Mineralogical investigation of gold ores. Developments in Mineral Processing. 2005. Vol. 15. pp. 21–72.
6. Adams M. D., Burger A. M. Characterization and blinding of carbonaceous preg-robbers in gold ores. Minerals Engineering. 1998. Vol. 11, Iss. 10. pp. 919–927.
7. La Brooy S. R., Linge H. G., Walker G. S. Review of gold extraction from ores. Minerals Engineering. 1994. Vol. 7, Iss. 10. pp. 1213–1241.
8. Thomas K. G., Pearson M. S. Pressure oxidation overview. Gold Ore Processing: Project Development and Operations. 2nd edn. Elsevier, Amsterdam. 2016. Chapter 21. pp. 341–358.
9. Fraser K. S., Walton R. H., Wells J. A. Processing of refractory gold ores. Minerals Engineering. 1991. Vol. 4, No. 7–11. pp. 1029–1041.
10. Yu L., Li S., Liu Q., Deng J., Luo B. et al. Gold Recovery from Refractory Gold Concentrates by Pressure Oxidation Pre-treatment and Thiosulfate Leaching. Physicochemical Problems of Mineral Processing. 2019. Vol. 55, Iss. 2. pp. 537–551.
11. Zaytsev P. V., Fomenko I. V., Chugaev L. V., Shneerson Ya. M. Pressure oxidation of double refractory raw materials in the presence of limestone. Tsvetnye Metally. 2015. No. 8. pp. 41–49.
12. Simmons G. L. Pressure oxidation process development for treating carbonaceous ores at Twin Creeks. Proceedings of Randol Gold Forum 96, Golden Colorado. 1996. pp. 199–208.
13. Chan T., Collins M., Dennet J., Stikgma J., Ji R. et al. Pilot plant pressure oxidation of refractory gold-silver concentrate from Eldorado Gold Corporation’s Certej project in Romania. Proceedings of the 7th International Symposium Hydrometallurgy 2014. Victoria, 2014. pp. 601–612.
14. Ketcham V. J., O’Reilly J. F., Vardill W. D. The Lihir gold project: Process plant design. Minerals and Metallurgical Processing. 1993. Vol. 6, No. 8–10. pp. 1037–1065.
15. Collins M. J. et al. The Lihir gold project: Pressure oxidation process development. Proceedings of the 4th International Symposium Hydrometallurgy 1993. Salt Lake City, 1993. pp. 611–628.
16. Simmons G. L. et al. Pressure oxidation problems and solutions: Treating carbonaceous gold ores contarning trace amounts of chlorine (halogens). Mining Engineering. 1998. Vol. 50. pp. 69–73.
17. Shneerson Ya. M., Chugaev L. V., Pleshkov M. A. A few features of autoclave opening of carbonic gold-bearing ores and concentrates. Tsvetnye Metally. 2011. No. 3. pp. 62–67.
18. Zaytsev P. V., Fomenko I. V., Pleshkov M. A., Chugaev L. V., Shneerson Ya. M. Peculiarities of pressure oxidation of gold-sulphide and carboncontaining concentrates in the presence of chlorides. Tsvetnye Metally. 2014. No. 4. pp. 11–16.
19. Fomenko I., Polezhaev S., Zaytsev P., Pleshkov M. The oxidized gold and its role in pressure oxidation of double refractory gold concentrates. Proceedings of ALTA 2014 Gold-Precious Metals Session. Perth, 2014. pp. 194–202.
20. Zaytsev P., Fomenko I. V., Shneerson Y. M., Pleshkov M. A. Specifics of double refractory gold concentrates pressure oxidation in the presence of chlorides. Proceedings of the 7th International Symposium Hydrometallurgy 2014. Victoria, 2014. pp. 501–514.
21. Fomenko I. V., Pleshkov M. A., Chugaev L. V., Shneerson Ya. M. Generation of gold losses during pressure oxidation and further cyaniding of double refractory concentrates. Proceedings of the 4th International Congress “Non-Ferrous Metals – 2012”. Krasnoyarsk : Verkho, 2012. pp. 590–597.
22. Zaytsev P. V., Chugaev L. V., Pleshkov M. A., Shneerson Ya. M., Klimentiev M. V. Pressure oxidation of double refractory gold concentrates. Proceedings of the 4th International Congress “Non-Ferrous Metals – 2012”. Krasnoyarsk : Verkho, 2012. pp. 561–567.
23. Axsenov B., Vorobiev-Desyatovskiy N., Kaplan S., Kovalev V. et al. Cyanide preg-robbing effect is a problem, which can arise during autoclave processing of double refractory gold ores. XXXVII International Mineral Processing Congress IMPC – 2014. Santiago, 2014. pp. 244–251.
24. Miller J. D., Wan R. Y., Díaz X. Preg-robbing gold ores. Gold Ore Processing (Second Edition) Elsevier: Amsterdam, The Netherlands, 2016. pp. 885–907.
25. Thomas K. G. Pressure oxidation overview. Developments in Mineral Processing (Ed. by Adams M.D.), Elsevier. 2005. Vol. 15. pp. 403–432.
26. Presentation of the AGMK-2 2019 project feasibility study. Available at: https://www.polymetalinternational.com/upload/iblock/12d/2019_02_11_Polymetal_POX_workshop.pdf (Accessed: 16.09.2020).

Language of full-text russian
Full content Buy
Back