Journals →  Chernye Metally →  2020 →  #10 →  Back

Metal science and metallography
ArticleName Modeling the process of dissolution of iron oxide Fe3O4 in an acidic environment
ArticleAuthor E. A. Eliseeva, S. L. Berezina, V. S. Boldyrev, A. G. Cherednichenko
ArticleAuthorData

Bauman Moscow State Technical University (Moscow, Russia):

E. A. Eliseeva, Cand. Chem., Associate Prof., e-mail: yakusheva@bmstu.ru
S. L. Berezina, Cand. Tech., Associate Prof., e-mail: sberezina@bmstu.ru
V. S. Boldyrev, Cand. Eng., Associate Prof., Dept. of Chemistry, e-mail: boldyrev.v.s@bmstu.ru

 

RUDN University (Moscow, Russia):
A. G. Cherednichenko, Dr. Chem., Prof., Head of the Physical and Colloidal Chemistry Dept., e-mail: cherednichenko-ag@rudn.ru

Abstract

The study of the regularities of dissolution of iron group metals is practically significant in solving topical issues related to the optimization of technological processes of leaching and enrichment of iron-oxide ores, with corrosion of steel products, etching of surface oxides, dimensional processing of iron alloys. Existing ideas about the mechanisms of dissolution are largely hypothetical and require experimental confirmation, and the available publications are not sufficiently studied in detail. The paper presents the results of investigation of the mechanism of dissolution of Fe3O4 oxide in an acidic environment. Kinetic parameters (specific dissolution rate, reaction order for the H+-ion) were calculated. The dependence of the composition of formed iron adsorption complexes on the concentration of H2SO4 is established. Modeling of the process shows the effect on the kinetics of dissolution of iron hydroxo - and sulfate-complexes. The obtained data can be taken into account when studying the kinetic characteristics of iron group metals and used in practical applications to optimize processes related to the dissolution of iron in acidic environments.

keywords Dissolution kinetics, iron oxide, specific velocity, surface active particles, adsorption, hydroxo-and sulphate-complexes, oxidation mechanism
References

1. Faivre D. Iron Oxides: From Nature to Applications. Weinheim: Wiley-VCH. 2016. 632 p.
2. Baskakov A. O., Solovyeva A. Yu., Loni Yu. V., Strashnokov S. S., Lyubutin I. S. et al. Magnetic and interface properties of the coreshell Fe3O4/Au nanocomposites. Appl. Surf. Sci. 2017. Vol. 422. pp. 638–644.
3. Sood A., Arora V., Shah J., Kotnala R. K., Jain T. K. et al. Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater. Sci. Eng. C. 2017. Vol. 80, Iss. 1. pp. 274–281.
4. Yu J., Chen F., Gao W., Y. Su., Chu X. et al. Iron carbide nanoparticles: An innovative nanoplatform for biomedical applications. Nanoscale Horizons. 2017. Vol. 2, Iss. 2. pp. 81–88.
5. Zhang M., Pu W., Pan S., Okoth O. K., Yang C., Zhang J. Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination. Journal of Alloys and Compounds. 2015. Vol. 648. pp. 719–725.
6. Zorya V. N., Korovushkin V. V., Permyakov А. А., Volynkina Е. P. Study of the mineral composition and crystal structure of iron-containing components in industrial wastes of the metallurgical complex. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2015. Vol. 58. No. 5. pp. 359–366.
7. Averina Yu. M., Kalyakina G. E., Menshikov V. V., Kapustin Yu. I., Boldyrev V. S. Neutralisation process design for electroplating industry wastewater containing chromium and cyanides. Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2019. No. 3. pp. 70–80. DOI: 10.18698/1812-3368-2019-3-70-80.
8. Scientific basis and practice of processing ores and technogenic raw materials. Collection of works of the XXII International scientific and technical conference. Ekaterinburg: Fort Dialog-Iset, 2017. 399 p.
9. Fedotov М. А., Kovalenko L. V., Folmanis G. E., Samus М. А., Krasitskaya S. G. et. al. Functional materials for radioactive waste disposal process. Rossiyskie nanotekhnologii. 2018. Vol. 13. No. 11–12. pp. 23–29.
10. Kipriyanov N. А., Gorichev I. G. Leach modeling using the acid-base properties of oxidized minerals in hydrometallurgy. Vestnik RUDN. Seriya: Inzhenernye issledovaniya. 2008. No. 3. pp. 73–78.
11. Eliseeva Е. А., Slynko L. Е., Plakhotnaya О. N., Kuzin А. V., Gorichev I. G. et. al. Kinetics of dissolution of cobalt Co3O4 and iron Fe3O4 oxides in sulfuric acid. Uspekhi sovremennogo estestvoznaniya. 2017. No. 8. pp. 19–23.
12. Artamonova I. V., Gorichev I. G., Izotov А. D., Pichugina N. М., Stepanov V. М. Using a probabilistic approach to describe the kinetic curves of dissolution and leaching of magnetite. Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI. 2009. No. 1. pp. 166–173.
13. Eliseeva Е. А., Berezina S. L., Gorichev I. G., Atanasyan Т. К., Goryacheva V. N. Influence of sulfate ions on the kinetics of dissolution of cobalt oxide Со3О4. Fundamentalnye issledovaniya. 2018. No. 8. pp. 7–11.
14. Frumkin А.N. Electrode processes: selected works. Moscow: Nauka, 1987. 334 p.
15. Kolotyrkin Ya. М., Lazarenko-Manevich R. M., Sokolova L. А. The role of water adsorption in the anodic dissolution of iron: correlation of kinetic and spectroscopic data. Doklad AN SSSR. 1987. Vol. 295. No. 3. pp. 610–614.
16. Florianovich G. М., Lazarenko-Manevich R. M. The role of solution components in the processes of active dissolution of metals. Itogi nauki i tekhniki. Seriya: Korroziya i zashchita ot korrozii. 1990. Vol. 16. pp. 3–54.
17. Heusler К. Е. Untersuchung der Auflosung des passiven Eisens in Schwefelsaure mit der rotierenden Scheiben Ring – Electrode. Ber. Bunsenges phys. Chem. 1968. Bd. 72. S. 1197–1205.
18. Jovancicevic V., Bockris J. О’М. Mechanism of oxygen reduction on iron in neutral solutions. Journal of the Electrochemical Society. 1986. Vol. 133. pp. 1797–1807.
19. Zytner Ya. D., Rotinyan A. L. Electrochemical behavior of iron in sulfuric acid solutions. Elektrokhimiya. 1966. Vol. 2. No. 12. pp. 1371–1382.
20. Bezdenezhnykh А. А. Engineering methods for composition of reaction rate equations and calculation of kinetic constants. Leningrad : Khimiya, 1973. 256 p.

Language of full-text russian
Full content Buy
Back