ArticleName |
Design parameters of dust-exhaust system of drying machine |
ArticleAuthorData |
Belarusian National Technical University, Minsk, Belarus:
N. I. Berezovsky, Head of Chair of Mining Machines, Professor, Doctor of Engineering Sciences N. P. Voronova, Associate Professor, Candidate of Engineering Sciences V. V. Boriseyko, Senior Lecturer at Chair of Mining Machines, boriseyko.v@bntu.by |
Abstract |
The authors propose an efficient flow chart for devaporation heat utilization with a counterflow preheater series-connected with the main heat-exchanger. An emphasis is laid on mathematical methods of determining design parameters of component assemblies in the remodeled dust-exhaust system. From computation of design parameters for dust-exhaust systems of steam tube driers commonly operated at peat briquetting plants in Belarus, it is feasible to use efficiently secondary energy sources in production of peat fuel briquettes, which can enable the product cost reduction in the industry. Integration of a high-performance bag collector in the dust-exhaust system of a single steam tube drier with annual operating time of 7200 h allows minimization of atmospheric emission (18–33 mg/m3), extra briquette production from 17–20 t of collected dust, as well as resource saving (water—18000 t/year, or 393 l per 1 t of briquettes, power—2.45 kW per 1 t of briquettes). Owing to highly efficient scrubbing of dust-and-air mixture, it is possible to connect additionally a steam tube heat-exchanger to the drier outlet, which allows recycling of secondary energy sources such as saturated steam in volume of 180 Mm3/year and condensed water in volume of 34000 t/year. |
References |
1. Berezovskiy N. I., Boriseyko V. V. Energy-saving dust-exhaust systems of steam-tube driers for the production of fuel briquettes. Gornaya mekhanika i mashinostroenie. 2017. No. 1. pp. 31–36. 2. Bag filters. Simatek. Available at: https://simatek.dk/bag-filters (accessed: 15.06.2020). 3. Shilyaev M. I. Dust-collecting system design techniques. Moscow : Forum, 2017. 320 p. 4. Boriseyko V. V., Berezovskiy N. I. Heat and moisture recycling facility in dust-exhaust system of steam tube drier. Patent 22525 RB, MPK F 22B 1/18. Applied: 29.12.2016. Published: 30.08.2018. Bulletin No. 2. 5. Condenser heat recycling. ALVAS Engineering. Available at: https://alvas-eng.ru/tekhinformatsiya/utilizatsiya-teploty-kondensata/ (accessed: 12.03.2020). 6. Float steam traps : Mode of operation. Energo-Lider LLC. Available at: https://www.en-lider.ru/useful-information/the-principle-of-operation-of-the-float-steam-trap/ (accessed: 12.03.2020). 7. Shutilov V. A. Basic physics of ultrasound : Teaching aid. Leningrad : Izdatelstvo Leningradskogo universiteta, 1980. 280 p. 8. Bulliard-Sauret O., Ferrouillat S., Vignal L., Pashmi E., Memponteil A., Gondrexon N. Experimental study of heat transfer enhancement using ultrasound on a flat plate in forced convection. Turbulence Heat and Mass Transfer 8 : Proceedings of the 8th international symposium. New York : Begell House Inc., 2015. pp. 745–748. 9. Fan types JK-30K – 75K. NEU JKF. Available at: https://www.neujkf.asia/ms-my/products/fansystems/fan-types-jk-30k-75k (accessed: 04.03.2020). 10. Voronova N. P., Boriseyko V. V. Convective heat exchange in shell-and-tube heat-exchanger. Economy and Engineering : From Theory to Practice. XVI International Conference Proceedings. Minsk : BNTU, 2020. pp. 211–212. 11. Dong Niu, GuiHua Tang. M olecular dynamics simul ation of droplet nucleation and growth on a rough surface: revealing the microscopic mechanism of the flooding mode. RSC Advances. 2018. Vol. 8, Iss. 43. pp. 24517–24524. 12. Zhukauscas A. A. Convective diffusion in heat-exchangers. Moscow : Nauka, 1982. 472 p. 13. Hannoschöck N. Wärmeleitung und -trasport: Grundlagen der Wärme- und Stoffübertragung. Berlin : Springer Vieweg, 2018. 492 s. 14. Ramirez-Tijerina R., Rivera-Solorio C., Singh J., Nigam K. D. P. Numerical Study of Heat Transfer Enhancement for Laminar Nanofluids Flow. Applied Science. 2018. Vol. 8, Iss. 12. 2661. DOI: 10.3390/app8122661 15. Polezhaev V. I., Bune A. V., Verezub N. A., Glushko G. S., Gryaznov V. L. et al. Mathematical modeling of convective heat exchange using the Navier – Stokes equations. Moscow : Nauka, 1987. 272 p. 16. Samsonov V. T. Air dedusting in industry : Methods and facilities. Moscow : Infra-M, 2016. 232 p. |