Журналы →  Obogashchenie Rud →  2020 →  №6 →  Назад

Название Research of the properties of magnetic fillers of cylindrical shape
DOI 10.17580/or.2020.06.05
Автор Sandulyak A. V., Tkachenko R. Yu., Sandulyak A. A., Ershova V. A.
Информация об авторе

MIREA – Russian Technological University (Moscow, Russia):

Sandulyak A. V., Professor, Doctor of Engineering Sciences, a.sandulyak@mail.ru
Tkachenko R. Yu., Postgraduate, tryu@yandex.ru
Sandulyak A. A., Professor, Doctor of Engineering Sciences, Professor, anna.sandulyak@mail.ru


Moscow Polytechnical University (Moscow, Russia):

Ershova V. A., Assosiate Professor, Candidate of Engineering Sciences, v.ershova@mail.ru


It has been noted that the information on magnetic properties of specific magnets available in the design and operation of magnetic separators/analyzers using magnetic fillers in the form of balls as the working body (polygradient type) is extremely limited, especially for magnets with varying sphericity coefficients (mutual ratios of characteristic sizes). Experiments using cylindrical samples (porous) as a ferromagnetic matrix rendered the induction data subsequently applied to establish the magnetic permeability, susceptibility, and magnetization values for the samples at various values of the length-todiameter ratio of φ = 1–16. The demagnetizing factor N was obtained and analyzed for the «short» samples (1 ≤ φ [φ]) in the range of magnetizing field strengths of 9–47 kA/m, taking into account the established transient value of φ = [φ] = 10–12 (when, at φ ≥ [φ], the magnetic properties of the sample correspond to the magnetic properties of its quasi-solid material). The analysis results for these data, required when assessing the actual magnetic properties of «short» working bodies, characteristic of polygradient magnetic separators/ analyzers, demonstrate the validity of the exponential dependence (decreasing with increasing ) of their demagnetizing factor.
The research was carried out with the financial support of the Ministry of Education and Science of the Russian Federation within the framework of the State Assignment in the field of science (project No. 0706-2020-0024) and of the Russian Foundation for Basic Research and the Royal Society of London under research project No. 20-52-10006.

Ключевые слова Ball charge sample, relative size, magnetic induction, permeability, susceptibility, magnetization, demagnetizing factor
Библиографический список

1. Karmazin V. V., Karmazin V. I. Magnetic, electric and special methods of mineral processing. Moscow: MGGU (MSMU), 2005. 669 p.
2. Mamonov S. V., Savin A. G., Metelev A. A., Gazaleeva G. I. The sulphidemagnetite ores integrated processing technology. Obogashchenie Rud. 2017. No. 4. pp. 12–17. DOI: 10.17580/or.2017.04.03.
3. Lv J.-F., Zheng Y.-X., Tong X., Zheng Y.-M., Zhang H.-P. Mineralogy, physical characterization and magnetic separation performance of a raw ilmenite concentrate for its purification. Russian Journal of Non-Ferrous Metals. 2017. Vol. 58, No. 2. pp. 101–108.
4. Kukurugya F., Rahfeld A., Möckel R., Nielsen P., Horckmans L., Spooren J., Broos K. Recovery of iron and lead from a secondary lead smelter matte by magnetic separation. Minerals Engineering. 2018. Vol. 122. pp. 17–25.
5. Alekseev V. S., Banshchikova T. S. Magnetic separation applications in the final treatment of sluice box concentrates. Obogashchenie Rud. 2019. No. 3. pp. 10–14. DOI: 10.17580/or.2019.03.02.
6. Pelevin A. E. Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud. 2019. No. 6. pp. 19–24. DOI: 10.17580/or.2019.06.04.
7. Yang C., Li S., Zhang C., Bai J., Guo Z. Application of superconducting high gradient magnetic separation technology on silica extraction from iron ore beneficiation tailings. Mineral Processing and Extractive Metallurgy Review. 2018. Vol. 39, Iss. 1. pp. 44–49.
8. Chizhevskiy V. B., Shavakuleva O. P. Effect of magnetic pulse treatment upon titanium magnetite ore grindability and crushability. Obogashchenie Rud. 2016. No. 4. pp. 3–9. DOI: 10.17580/or.2016.04.01.
9. Pelevin A. E., Sytykh N. A. Iron concentrate stage separation by means of drum magnetic separator with modified separating bath. Obogashchenie Rud. 2016. No. 4. pp. 10–15. DOI: 10.17580/or.2016.04.02.
10. Ganzhenko I. M., Yakubaylik E. K. Magnetite losses decrease at the Abagurskaya concentrating plant. Obogashchenie Rud. 2015. No. 1. pp. 22–25.
11. Zhang X., Tan X., Yi Y., Liu W., Li C. Recovery of manganese ore tailings by high-gradient magnetic separation and hydrometallurgical method. JOM. 2017. Vol. 69. pp. 2352–2357.
12. Anhalt M. Systematic investigation of particle size dependence of magnetic properties in soft magnetic composites. Journal of Magnetism and Magnetic Materials. 2008. Vol. 320. pp. e366–e369.
13. Ilyin N. A., Klimov A. A., Tiercelin N., Mishina E. D., Gaponov M. S., Brekhov K. A., Sigov A. S., Preobrazhensky V. L., Pernod P. Dynamics of magnetization in multilayer TbCo / FeCo structures under the influence of femtosecond optical excitation. Rossiyskiy Tekhnologicheskiy Zhurnal. 2019. Vol. 7, No. 3. pp. 50–58.
14. Sandulyak A. A., Polismakova M. N., Kiselev D. O., Sandulyak D. A., Sandulyak A. V. On limiting the volume fraction of particles in the disperse sample (for the tasks on controlling their magnetic properties). Tonkie Khimicheskie Tekhnologii. 2017. Vol. 12, No. 3. pp. 58–64.
15. Diguet G., Beaugnon E., Cavaillé J. Y. Shape effect in the magnetostriction of ferromagnetic composite. Journal of Magnetism and Magnetic Materials. 2010. Vol. 322. pp. 3337–3341.
16. Bjork R., Zhou Z. The demagnetization factor for randomly packed spheroidal particles. Journal of Magnetism and Magnetic Materials. 2019. Vol. 476. pp. 417–422.
17. Eskandarpour A., Iwai K., Asai S. Superconducting magnetic filter: Performance, recovery, and design. IEEE Transactions on Applied Superconductivity. 2008. Vol. 19, Iss. 2. pp. 84–95.
18. Mishima F., Terada T., Akiyama Y., Izumi Y., Okazaki H., Nishijima S. Research and development of superconducting magnetic separation system for powdered products. IEEE Transactions on Applied Superconductivity. 2008. Vol. 18, Iss. 2. pp. 824–827.
19. Mattei J. L., Minot O., Le Floc’h M. Study of magnetic percolation in heterogeneous materials. Journal of Magnetism and Magnetic Materials. 1995. Vol. 140–144, Iss. 3. pp. 2189–2190.
20. Sandulyak A. V., Sandulyak D. A., Ershova V. A., Tkachenko R. Y., Sandulyak A. A., Polismakova M. N. Magnetic characteristics of «short» porous magnetic: by the example of filling of spheres. Fundamentalnye i Prikladnye Problemy Tekhniki i Tekhnologii. 2019. No. 3. pp. 121–133.
21. Chen D. X., Pardo E., Zhu Y.-H., Xiang L.-X., Ding J.-Q. Demagnetizing correction in fluxmetric measurements of magnetization curves and hysteresis loops of ferromagnetic cylinders. Journal of Magnetism and Magnetic Materials. 2018. Vol. 449. pp. 447–454.
22. Yaglidere I., Gunes E. O. A novel method for calculating the ring-core fluxgate demagnetization factor. IEEE Transactions on Magnetics. 2018. Vol. 54, Iss. 2. pp. 400–411.
23. Im S. H., Park G. S. A research on the demagnetizing factors for magnetic hollow cylinders. Proc. of the 21st International conference on electrical machines and systems (ICEMS). 2018. pp. 2629–2632.
24. Wang M., Feng J., Shi Y., Shen M. Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer. IEEE Transactions on Industrial Electronics. 2019. Vol. 66, Iss. 3. pp. 1842–1851.
25. Caciagli A., Baars R. J., Philipse A. P., Kuipers B. W. M. Exact expression for the magnetic field of a finite cylinder with arbitrary uniform magnetization. Journal of Magnetism and Magnetic Materials. 2018. Vol. 456. pp. 423–432.
26. Marinica O. M. Study of static magnetic properties of transformer oil based magnetic fluids for various technical applications using demagnetizing field correction. Journal of Nanomaterials. 2017. 9 p. DOI: 10.1155/2017/5407679.
27. Kiefer I. I. Testing of ferromagnetic materials. Moscow: Energiya, 1969. 360 p.
28. Périgo E. A., Weidenfeller B., Kollár P., Füzer J. Past, present, and future of soft magnetic composites. Applied Physics Review. 2018. Vol. 5, Iss. 3. DOI: 10.1063/1.5027045.

Language of full-text русский
Полный текст статьи Получить