ArticleAuthorData |
Siberian State Industrial University (Novokuznetsk, Russia):
S. A. Nevskii, Cand. Eng., Assistant Prof., Dept. of Natural Science
V. E. Kormyshev, Cand. Eng., Researcher, Research Dept.
Perm National Research Polytechnic University (Perm, Russia):
Yu. N. Simonov, Dr. Eng., Prof., Dept. of Metal Science, Laser and Thermal Treatment
Samara National Research University (Samara, Russia):
S. V. Konovalov, Dr. Eng., Prof., Dept. of Materials Technology and Aviation Material Science, E-mail: ksv@ssau.ru |
References |
1. Fronstein N. Advanced High Strength Sheet Steels. Berlin: Springer, 2015. 396 p. 2. Zhao M., Song L., Fan X. The Boundary Theory of Phase Diagrams and Its Application, Berlin: Springer, 2011. 238 p.
3. Fucheng Zhang, Zhinan Yang. Development of and Perspective on High-Performance Nanostructured Bainitic Bearing Steel. Engineering. 2019. Vol. 5. pp. 319–328. DOI: 10.1016/j.eng.2018.11.024 4. Sha W. Steels. Berlin: Springer, 2013. 268 p. 5. Ji-Cheng Zhao, Notis M.R. Continuous cooling transformation kinetics versus isothermal transformation kinetics of steels: a phenomenological rationalization of experimental observations. Materials Science and Engineering: R: Reports. 1995. Vol. 15. pp. 135–207. DOI: 10.1016/0927-796X(95)00183-2 6. Fei Peng, Yunbo Xu, Jiayu Li, Xingli Gu, Xu Wang. Interaction of martensite and bainite transformations and its dependence on quenching temperature in intercritical quenching and partitioning steels. Materials & Design. 2019. Vol. 181. p. 107921. DOI: 10.1016/j.matchar.2020.110244 7. Hehemann R. F., Kinsman K. R., Aaronson H. I. A debate on the bainite reaction. Metall. Trans. 1972. Vol. 3. No. 5. pp. 1077–1094. DOI: 10.1007/BF02642439 8. Bhadeshia H. K. D. H., Bainite In Steels. Transformations, Microstructure and Properties, Cambridge University Press, Cambridge, 2001. 454 p. 9. Caballero F. G., Miller M. K., Garcia-Mateo C., et al. New experimental evidence of the diffusionless transformation nature of bainite. J. Alloy. Compd. 2013. Vol. 577 (5). pp. S626–S630. DOI: 10.1016/j.jallcom.2012.02.130 10. Borgenstam A., Hillert M., gren J. Metallographic evidence of carbon diffusion in the growth of bainite. Acta Mater. 2009. Vol. 57 (11). pp. 3242–3252. DOI: 10.1016/j.actamat.2009.03.026 11. Jun Lu, Hao Yu, Xiaoni Duan, Chenghao Song. Investigation of microstructural evolution and bainite transformation kinetics of multi-phase steel. Materials Science and Engineering: A. 2020. Vol. 774. pp. 138868 DOI: 10.1016/j.msea.2019.138868 12. Liu Z. C., Wang H. Y., Ren H. P. Shear-diffusion conformity mechanism of bainite transformation. In: Heat Treatment of Metals. 2006, pp. 36–42. 13. Razumov I. K. Possible Mechanisms of the Formation of Bainitic Colonies. Physics of the Solid State. 2019. Vol. 61. pp. 80–83. DOI: 10.1134/S1063783419020203 14. Johnson W. A., Mehl R. F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 1939. Vol. 135. pp. 416–458. 15. Avrami M. Kinetics of phase change. III: granulation, phase change and microstructure. J. Chem. Phys. 1941. Vol. 9. No. 2. pp. 177–184. 16. Kolmogorov A. N. On the statistical theory of metal crystallization. Izv. Akad. Nauk. SSSR Ser. Mat. 1937. No. 3. pp. 355–359. 17. Kirkaldy J. S., Venugopalan D. Prediction of microstructure and hardenability in low alloy steels, in: A. R. Marder, J. I. Goldstein (Eds.), International Conference on Phase Transformations in Ferrous Alloys. 1983. pp. 125–148. 18. Hao Zhao, Xiuli Hu, Junjia Cui, Zhongwen Xing. Kinetic model for the phase transformation of high-strength steel under arbitrary cooling conditions. Metals and Materials International. 2019. Vol. 25. pp. 381–395. DOI: 10.1007/s12540-018-0196-2 19. Lee S. J., Pavlina E. J., Tyne C. J. V. Kinetics modeling of austenite decomposition for an end-quenched 1045 steel. Mater. Sci. Eng. A. 2010. Vol. 527. No. 13. pp. 3186–3194. DOI: 10.1016/j.msea.2010.01.081 20. Lee S. J., Lee Y. K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics. Acta Mater. 2008. Vol. 56 (7). pp. 1482–1490. DOI: 10.1016/j.actamat.2007.11.039 21. kerstrm P., Bergman G., Oldenburg M. Numerical implementation of a constitutive model for simulation of hot stamping. Model. Simul. Mater. Sci. Eng. 2007. Vol. 15 (2). pp. 105–119. DOI: 10.1088/0965-0393/15/2/007 22. Hippchen P., Lipp A., Grass H., Craighero P. et al. Modelling kinetics of phase transformation for the indirect hot stamping process to focus on car body parts with tailored properties. Journal of Materials Processing Technology. 2016. Vol. 228. pp. 59–67. DOI: 10.1016/j.jmatprotec.2015.01.003 23. Koistinen D. P., Marburger R. E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron carbon alloys and plain carbon steels. Acta Metall. 1959. Vol. 7 (1). pp. 59–60. DOI: 10.1016/0001-6160(59)90170-1 24. Yudin Yu. V., Maisuradze M. V., Kuklina A. A. Describing the isothermal bainitic transformation in structural steels by a logistical function. Steel in Translation. 2017. Vol. 47. pp. 213–218. DOI: 10.3103/S0967091217030160 25. Yudin Yu. V., Kuklina A. A., Lebedev P. D., Maisuradze M. V. Simulation of Isothermal Austenite Transformation in Steel. Steel in Translation. 2018. Vol. 48. pp. 684–689. DOI: 10.3103/S0967091218100133 26. Maisuradze M. V., Ryzhkov M. A., Yudin Yu. V., Kuklina A. A. Transformations of supercooled austenite in a promising highstrength steel under continuous cooling. Metal Science and Heat Treatment. 2017. Vol. 59. pp. 486–490. DOI: 10.1007/s11041-017-0176-z 27. Sidhu Gaganpreet, Srinivasan Seshasai, Bhole Sanjiwan. A Model for bainite formation at isothermal heat treatment conditions. Journal of Thermal Science and Engineering Applications. 2020. Vol. 12. p. 011006. DOI: 10.1115/1.4042861 28. Razumov I. K., Gornostyrev Yu. N., Katsnelson M. I. Effect of magnetism on kinetics of γ → α transformation and pattern formation in iron. J. Phys.: Condens. Matter. 2013. Vol. 25. pp. 135401. DOI: 10.1088/0953-8984/25/13/135401 29. Razumov I. K., Gornostyrev Yu. N., Katsnelson M. I. Autocatalytic mechanism of pearlite transformation in steel. Physical Review Applied. 2017. Vol. 7. pp. 014002. DOI: 10.1103/PhysRevApplied.7.014002 30. Loginova I., Odqvist J., Amberg G., Agren J. The phase-field approach and solute drag modeling of the transition to massive γ → α transformation in binary Fe–C alloys. Acta Materialia. 2003. Vol. 51. pp. 1327–1339. DOI: 10.1016/S1359-6454(02)00527-X 31. Loginova I., Amberg G., Agren J. On the formation of Widmanstatten ferrite in binary Fe–C phase-field approach. Acta Materialia. 2004. Vol. 52. pp. 4055–4063. DOI: 10.1016/j.actamat.2004.05.033 32. Kuziak R., Pidvysots’kyy V., Pernach M., Rauch L., Zygmunt T., Pietrzyk M. Selection of the best phase transformation model for optimization of manufacturing processes of pearlitic steel rails. Archives of Сivil and Mechanical Engineering. 2019. Vol. 19. pp. 535–546. 33. Shah S. M. A., Khattak M. A., Asad M., Iqbala J., Badshahd S., Khan M. S. Numerical modeling of phase transformation during grinding process. Jurnal Teknologi. 2017. Vol. 79. pp. 33 – 41, DOI: 10.11113/jt.v79.10573 34. Sarychev V. D., Khaimzon B. B., Nevskii S. A., Il’yashchenko A. V., Grishunin V. A. Mathematical models of mechanisms for rolled products accelerated cooling. Izvestiya vuzov. Chernaya metallurgiya. 2018. Vol. 61. pp. 326–332. DOI: 10.17073/0368-0797-2018-4-326-332 35. Konovalov S., Chen X., Sarychev V., Nevskii S., Gromov V., Trtica M. Mathematical modeling of the concentrated energy flow effect on metallic materials. Metals. 2017. Vol. 7 (1). No. 4. pp. 1–18. DOI: 10.3390/met7010004 36. Voronov A. N., Kvachkai T, Zadan V. T., Pavlush M. Computer modelling of austenite transformation at steel cooling. Izvestiya AN SSSR. Metally. 1991, Iss. 2. pp. 81–89. 37. Reti T., Fried Z., Felde I. Computer simulation of steel quenching process using a multi-phase transformation model. Computational Materials Science. 2001. Vol. 22. pp. 261–278. DOI: 10.1016/S0927-0256(01)00240-3 |