ArticleName |
Kinetics of synthesizing process for obtaining iron nanopowder by chemical-metallurgical method under isothermal conditions |
References |
1. Bhushan B. Springer Handbook of Nanotechnology. 4th edition. Berlin: Springer-Verlag Heidelberg, 2017. 1500 p. 2. Nguyen V. M., Karunakaran G., Nguyen T. H., Kolesnikov E. A., Alymov M. I. Enhancement of structural and mechanical properties of Fe+0.5 % C steel powder alloy via incorporation of Ni and Co nanoparticles. Letters on Materials. 2020. Vol. 10, Iss. 2. pp. 174–178. 3. Tavallalia V., Kianib M., Hojatia S. Iron nano-complexes and iron chelate improve biological activities of sweet basil (Ocimum basilicum L.). Plant Physiology and Biochemistry. 2019. Vol. 144. pp. 445–454. 4. Nagi Ł., Płużek A. Electrical Strength of Natural Esters Doped by Iron Nanopowder in a Hydrophobic Carbon Shell. Materials. 2020. Vol. 13. Iss. 8. 1956. 5. Kovalenko L. V., Folmanis G. E., Vavilov N. S., Adymov М. I. Low-temperature hydrogen reduction of nanocrystalline iron-containing raw materials. Fizika i khimiya obrabotki materialov. 2000. No. 4. pp. 79–81. 6. Alymov M. I., Seplyarskii B. S., Rubtsov N. M., Vadchenko S. G., Kochetkov R. А. et al. Macrokinetic investigation of the interaction mechanism of the pyrophoric iron nanopowder compacts with air. Pure and Applied Chemistry. 2020. Vol 92, Iss. 8. pp. 1321–1328. 7. Alymov M. I., Ankudinov А. B., Tikhomirov S. А., Evstratov Е. V., Arsenkin А. М. Influence of sintering modes on mechanical properties of compacts made of iron powders of different dispersion. Perspektivnye materialy. 2006. No. 2. pp. 87–92. 8. Alymov M. I., Averin S. I., Evstratov Е. V. Thermal stability of nanocrystalline iron. Fizika i khimiya obrabotki materialov. 2004. No. 4. pp. 90–91. 9. Konyukhov Yu. V. Application of iron nanopowders for wastewater treatment from lead, copper and zinc ions. Stal. 2018. No. 2. pp. 62–68. 10. Crane R. A., Scott T. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials. 2012. No. 211. pp. 112–125. 11. Huber D. L. Synthesis, properties, and applications of iron nanoparticles. Small. 2005. No. 1. pp. 482–501. 12. Yan W., Lien H. L., Koel B. E. Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environmental Science: Processes and Impacts. 2013. No. 15. pp. 63–77. 13. Gobinath R., Datta S. P., Singh R. D., Manasa V. Effect of mode and source of iron nano particles on the biological properties of the calcareous soil. International Journal of Chemical Studies. 2020. Vol. 8, Iss. 4. pp. 3334–3337. 14. Klinger А., Altendorfer А., Bettinger D., Hughes G. D., Al-Husseini А. А. et. al. The new system for control and improvement of technological process at DRI units. Chernye Metally. 2017. No. 10. pp. 19–27. 15. Koshanova A., Partizan G., Мansurov B., Мedyanova B., Mansurova M. et al. Synthesis of carbon nanostructures on iron nanopowders. Journal of Physics: Conference Series. 2016. Vol. 741. 16. Nguyen T. Н., Konyukhov Yu. V., Nguyen V. М., Levina V. V., Karpenkov D. Yu. Magnetic properties of Fe, Co, Ni nanopowders obtained by the chemical-metallurgical method. Proceedings of the XXII International conference on permanent magnets. 2019. pp. 104–105. 17. Kargin D. B., Mukhambetov D. G., Konyukhov Yu. V., Altynov Е. А., Aznabakiev К. R. Magnetic properties of iron nanopowders and iron oxides obtained from mill scale. Proceedings of the XXII International conference on permanent magnets. 2019. pp. 106–107. 18. Konyukhov Yu. V., Nguyen V. М., Ryzhonkov D. I. Kinetic regularities of processes of hydrogen reduction of α-Fe2O3 nanopowder during energy-mechanical processing in an electromagnetic field. Fizika i khimiya obrabotki materialov. 2018. No. 1. pp. 66–74. 19. Nguyen T. H., Nguyen V. М. Influence of surfactants on the dispersion of iron, cobalt and nickel nanopowders. Izvestiya vysshikh uchebnykh zavedeniy. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2020. No. 1. pp. 22–28. 20. Ryzhonkov D. I., Konyukhov Y. V., Nguyen V. M. Kinetic regularities and mechanisms of hydrogen reduction of nanosized oxide materials in thin layers. Nanotechnologies in Russia. 2017. Vol. 12. No. 11-12. pp. 620–626. 21. Ryzhonkov D. I., Arsentev P. P., Yakovlev V. V. Theory of metallurgical processes. Moscow: Metallurgiya, 1989. 392 p. 22. Nguyen V. M., Konyukhov Yu. V., Ryzhonkov D. I., Kotov S. I. Features of obtaining nanodispersed and micron nickel powders by hydrogen reduction in a vortex magnetic field. Izvestiya vysshikh uchebnykh zavedeniy. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2016. No. 1. pp. 4–11. 23. Kolpakova N. А., Romanenko S. V., Kolpakov V. А. Collection of tasks in chemical kinetics. Tomsk: Izdatelstvo TPU, 2008. 280 p. 24. Usenko А. Е., Pankov V. V., Sobeskiy А. S. Solid-phase synthesis of magnetite from hematite in a reducing atmosphere of ethyl alcohol vapor. Vestnik BGU. Seriya 2. Khimiya. Biologiya. Geografiya. 2013. No. 3. pp. 16–21. 25. Grineva О. V., Kantaev I. S., Kisilev А. D., Kraydenko R. I. Chlorammonium separation of magnesium oxide and silicon obtained by the method of silicon dioxide magnetothermy. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2011. Vol. 319. No. 3. pp. 66–69. 26. Schmalzried H. Chemical Kinetics of Solids. Weinheim: VCH, 1995. 433 p. 27. Chen H., Zheng Z., Shi W. Investigation on the kinetics of Iron ore fines reduction by CO in a micro-fluidized bed. Procedia Engineering. 2015. Vol. 102. pp. 1726–1735. 28. Ryzhonkov D. I., Kostyrev S. B. Kinetics of oxides reduction processes under the influence of electromagnetic fields. Izvestiya vuzov. Chernaya metallurgiya. 1992. No. 3. pp. 6–8. |