Журналы →  Chernye Metally →  2021 →  №2 →  Назад

Metal Science and Metallography
Название About the possibility of identification of articles from steels, aluminum, copper and alloys on their basis on the expanded micro-impurity elemental composition
DOI 10.17580/chm.2021.02.09
Автор Yu. B. Sazonov, D. Yu. Ozherelkov, R. Sh. Latypov, E. E. Gorshkov
Информация об авторе

National University of Science and Technology “MISiS” (Moscow, Russia):

Yu. B. Sazonov, Cand. Eng., Associate Prof., Dept. of Metallurgy and Strength Physics, E-mail: u-sazonov@yandex.ru
D. Yu. Ozherelkov, Cand. Eng., Associate Prof., Dept. of Metallurgy and Strength Physics;

 

Institute of Criminology of the Center for Special Equipment of the Federal Security Service of Russia (Moscow, Russia):
R. Sh. Latypov, Employee of the Institute
E. E Gorshkov, Cand. Biol., Employee of the Institute

Реферат

Possibility of determination of the fragments and articles made of different grades of steel aluminium and copper alloys and their affiliation to the common melt was examined via the methods of photoelectric spectral analysis based on composition of micro-impurities. Chemical elements with micro-impurities were revealed; they allow to determine affiliation of metal fragments to one melt. Ultimately possible deviations of micro-impurities within one melt were obtained. The technique allowing to establish affiliation of fragments to the common melt based on their elementary composition of micro-impurities with minimal amount of measurements was suggested based on the obtained results. The minimal geometric size of a sample available for analysis was determined; it allows to classify the examined fragments to one melt based on the results of investigation of expanded elementary composition of micro-impurities. Practical opportunities of this technique were displayed on the example of the alloys with different chemical composition.

Ключевые слова Steel, aluminium, copper, non-ferrous metals, elements with micro-impurities, photoelectric spectral analysis, identifi cation of alloys
Библиографический список

1. Grigorovich К. V. Analytical chemistry in steel industry. Rossiyskiy Khimicheskiy Zhurnal. 2002. Vol. XLVI. No. 4. pp. 88–92.
2. Zommer D., Flock J., Thiemann E., Schlothmann B.-J. Analytical chemistry in steel industry. Chernye Metally. 2011. No. 3. pp. 53–60.
3. Meurs J. Methods and tendencies of analytical measurements in iron and steel industry. Chernye Metally. 2009. No. 12. pp. 52–55.
4. Babushkin А. А. Bazhulin P. А., Korolev F. А. et. al. Methods of spectral analysis. Moscow: Izdatelstvo Moscovskogo universiteta, 1962. 509 p.
5. Vasilevskiy А. М., Konoplev G. А., Panov М. F. Optical and physical research methods: textbook. Saint-Petersburg : Izdatelstvo SPb-GETU «LETI», 2011. 60 p.
6. Buravlev Yu. М. Atomic emission spectrometry of metals and alloys. Donetsk: DonGU, 2000. 375 p.
7. Grigorovich K. V. New possibilities of modern methods for determination of gas-forming impurities in metals. Zavodskaya laboratoriya. Diagnostika materialov. 2007. No. 1. Vol. 73. pp. 23–34.
8. Bokk D. N., Labusov V. А. Determination of non-metallic inclusions in metal alloys by atomic emission spectrometry with spark excitation (review). Zavodskaya laboratoriya. Diagnostika materialov. 2018. No. 84. pp. 5–19.
9. Bokk D. N., Labusov V. А. The method of reducing the limits of non-metallic inclusions detection in metal alloys when using the method of atomic emission spectrometry with spark excitation. Analitika i kontrlol. 2016. Vol. 20. No. 4. pp. 286–293.
10. Bengtson A. Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals-A review of applications and analytical performance. Spectrochim. Acta. Part B: Atomic Spectroscopy. 2017. Vol. 134. pp. 123–132.
11. GOST 18895–97. Steel. Method of photoelectric spectral analysis. Introduced: 01.01.1998.
12. GOST R 54153–2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012.
13. GOST 3221–85. Primary aluminium. Methods of spectral analysis. Introduced: 01.07.1986.
14. GOST 7727–81. Aluminium alloys. Methods of spectral analysis. Introduced: 01.07.1982.
15. GOST 31382–2009. Copper. Methods of analysis. Introduced: 01.04.2010.
16. Kudrya А. V., Shtremel М. А. On the reliability of data analysis in quality management. Metallovedenie i termicheskaya obrabotka metallov. 2010. No. 7. pp. 50–55.

17. Kudrya А. V., Sokolovskaya E. A., Sukhova V. G., Skorodumov S. V. Limitations of classical statistics in the certification and quality management of structural steel. Izvestiya vuzov. Chernaya metallurgiya. 2010. No. 11. pp. 43–47.
18. Kudrya А. V., Sokolovskaya E. A., Salikhov T. Sh., Ponomareva M. V., Skorodumov S. V. et. al. Estimation of inhomogeneity of sheet steels quality. Izvestiya vuzov. Chernaya metallurgiya. 2008. No. 11. pp. 30–37.
19. Kudrya А. V., Sokolovskaya E. A. Information technologies in the production of materials. Elektrometallurgiya. 2010. No. 12. pp. 35–43.
20. Falk H., Wintjens P. Statistical evaluation of single sparks. Spectrochim. Acta. Part B: Atomic Spectroscopy. 1998. Vol. 53. No. 1. pp. 49–62.
21. Shi G., Gao Y., Wang X. Material properties and partial factors for resistance of low yield point steels in China. Construction and Building Materials. 2019. Vol. 209. pp. 295–305.
22. Ibrahim O. A., Lignos D. G., Rogers C. A. A probabilistic approach for assessing discontinuities in structural steel components based on Charpy-V-notch tests. Engineering Structures. 2017. Vol. 147. pp. 1–11.
23. Mehmanpazir F., Khalili-Damghani K., Hafezalkotob A. Modeling steel supply and demand functions using logarithmic multiple regression analysis (case study: Steel industry in Iran). Resources Policy. 2019. Vol. 63. p. 101409.
24. Lukács J. Fatigue crack propagation limit curves for high strength steels based on two-stage relationship. Engineering Failure Analysis. 2019. Vol. 103. pp. 431–442.
25. Böhlen J. M., Yellepeddi R. Application of optical emission spectrometry for combined quantitative and high-speed analysis of non-metallic inclusions in metallurgy. Lityo i metallurgiya. 2012. No. 1. pp. 115–120.
26. Hemmerlin M., Meilland R., Falk H., Wintjens P., Paulard L. Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis — comparison with spark-optical emission spectrometry fi gures of merit. Spectrochim. Acta. Part B: Atomic Spectroscopy. 2001. Vol. 56, Iss. 6. pp. 661–669.
27. Cabalın L. M., Mateo M. P., Laserna J. J. Large area mapping of nonmetallic inclusions in stainless steel by an automated system based on laser ablation. Spectrochim. Acta. Part B: Atomic Spectroscopy. 2004. Vol. 59, Iss. 4. pp. 567–575.
28. Kuss H. M., Mittelstaedt H., Mueller G. Inclusion mapping and estimation of inclusion contents in ferrous materials by fast scanning laser-induced optical emission spectrometry. J. Anal. Atom. Spectrom. 2005. Vol. 20. No. 8. pp. 730–735.
29. Boué-Bigne F. Analysis of oxide inclusions in steel by fast laser-induced breakdown spectroscopy scanning: an approach to quantification. Appl. Spectrosc. 2007. Vol. 61. No. 3. pp. 333–337.
30. Kuss H. M., Lüngen S., Müller G., Thurmann U. Comparison of spark OES methods for analysis of inclusions in iron base matters. Anal. Bioanal. Chem. 2002. Vol. 374. No. 7-8. pp. 1242–1249.

Language of full-text русский
Полный текст статьи Получить
Назад