ArticleName |
About the possibility of identification of articles from steels, aluminum, copper and alloys on their basis on the expanded micro-impurity elemental composition |
ArticleAuthorData |
National University of Science and Technology “MISiS” (Moscow, Russia):
Yu. B. Sazonov, Cand. Eng., Associate Prof., Dept. of Metallurgy and Strength Physics, E-mail: u-sazonov@yandex.ru D. Yu. Ozherelkov, Cand. Eng., Associate Prof., Dept. of Metallurgy and Strength Physics;
Institute of Criminology of the Center for Special Equipment of the Federal Security Service of Russia (Moscow, Russia): R. Sh. Latypov, Employee of the Institute E. E Gorshkov, Cand. Biol., Employee of the Institute |
References |
1. Grigorovich К. V. Analytical chemistry in steel industry. Rossiyskiy Khimicheskiy Zhurnal. 2002. Vol. XLVI. No. 4. pp. 88–92. 2. Zommer D., Flock J., Thiemann E., Schlothmann B.-J. Analytical chemistry in steel industry. Chernye Metally. 2011. No. 3. pp. 53–60. 3. Meurs J. Methods and tendencies of analytical measurements in iron and steel industry. Chernye Metally. 2009. No. 12. pp. 52–55. 4. Babushkin А. А. Bazhulin P. А., Korolev F. А. et. al. Methods of spectral analysis. Moscow: Izdatelstvo Moscovskogo universiteta, 1962. 509 p. 5. Vasilevskiy А. М., Konoplev G. А., Panov М. F. Optical and physical research methods: textbook. Saint-Petersburg : Izdatelstvo SPb-GETU «LETI», 2011. 60 p. 6. Buravlev Yu. М. Atomic emission spectrometry of metals and alloys. Donetsk: DonGU, 2000. 375 p. 7. Grigorovich K. V. New possibilities of modern methods for determination of gas-forming impurities in metals. Zavodskaya laboratoriya. Diagnostika materialov. 2007. No. 1. Vol. 73. pp. 23–34. 8. Bokk D. N., Labusov V. А. Determination of non-metallic inclusions in metal alloys by atomic emission spectrometry with spark excitation (review). Zavodskaya laboratoriya. Diagnostika materialov. 2018. No. 84. pp. 5–19. 9. Bokk D. N., Labusov V. А. The method of reducing the limits of non-metallic inclusions detection in metal alloys when using the method of atomic emission spectrometry with spark excitation. Analitika i kontrlol. 2016. Vol. 20. No. 4. pp. 286–293. 10. Bengtson A. Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals-A review of applications and analytical performance. Spectrochim. Acta. Part B: Atomic Spectroscopy. 2017. Vol. 134. pp. 123–132. 11. GOST 18895–97. Steel. Method of photoelectric spectral analysis. Introduced: 01.01.1998. 12. GOST R 54153–2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012. 13. GOST 3221–85. Primary aluminium. Methods of spectral analysis. Introduced: 01.07.1986. 14. GOST 7727–81. Aluminium alloys. Methods of spectral analysis. Introduced: 01.07.1982. 15. GOST 31382–2009. Copper. Methods of analysis. Introduced: 01.04.2010. 16. Kudrya А. V., Shtremel М. А. On the reliability of data analysis in quality management. Metallovedenie i termicheskaya obrabotka metallov. 2010. No. 7. pp. 50–55.
17. Kudrya А. V., Sokolovskaya E. A., Sukhova V. G., Skorodumov S. V. Limitations of classical statistics in the certification and quality management of structural steel. Izvestiya vuzov. Chernaya metallurgiya. 2010. No. 11. pp. 43–47. 18. Kudrya А. V., Sokolovskaya E. A., Salikhov T. Sh., Ponomareva M. V., Skorodumov S. V. et. al. Estimation of inhomogeneity of sheet steels quality. Izvestiya vuzov. Chernaya metallurgiya. 2008. No. 11. pp. 30–37. 19. Kudrya А. V., Sokolovskaya E. A. Information technologies in the production of materials. Elektrometallurgiya. 2010. No. 12. pp. 35–43. 20. Falk H., Wintjens P. Statistical evaluation of single sparks. Spectrochim. Acta. Part B: Atomic Spectroscopy. 1998. Vol. 53. No. 1. pp. 49–62. 21. Shi G., Gao Y., Wang X. Material properties and partial factors for resistance of low yield point steels in China. Construction and Building Materials. 2019. Vol. 209. pp. 295–305. 22. Ibrahim O. A., Lignos D. G., Rogers C. A. A probabilistic approach for assessing discontinuities in structural steel components based on Charpy-V-notch tests. Engineering Structures. 2017. Vol. 147. pp. 1–11. 23. Mehmanpazir F., Khalili-Damghani K., Hafezalkotob A. Modeling steel supply and demand functions using logarithmic multiple regression analysis (case study: Steel industry in Iran). Resources Policy. 2019. Vol. 63. p. 101409. 24. Lukács J. Fatigue crack propagation limit curves for high strength steels based on two-stage relationship. Engineering Failure Analysis. 2019. Vol. 103. pp. 431–442. 25. Böhlen J. M., Yellepeddi R. Application of optical emission spectrometry for combined quantitative and high-speed analysis of non-metallic inclusions in metallurgy. Lityo i metallurgiya. 2012. No. 1. pp. 115–120. 26. Hemmerlin M., Meilland R., Falk H., Wintjens P., Paulard L. Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis — comparison with spark-optical emission spectrometry fi gures of merit. Spectrochim. Acta. Part B: Atomic Spectroscopy. 2001. Vol. 56, Iss. 6. pp. 661–669. 27. Cabalın L. M., Mateo M. P., Laserna J. J. Large area mapping of nonmetallic inclusions in stainless steel by an automated system based on laser ablation. Spectrochim. Acta. Part B: Atomic Spectroscopy. 2004. Vol. 59, Iss. 4. pp. 567–575. 28. Kuss H. M., Mittelstaedt H., Mueller G. Inclusion mapping and estimation of inclusion contents in ferrous materials by fast scanning laser-induced optical emission spectrometry. J. Anal. Atom. Spectrom. 2005. Vol. 20. No. 8. pp. 730–735. 29. Boué-Bigne F. Analysis of oxide inclusions in steel by fast laser-induced breakdown spectroscopy scanning: an approach to quantification. Appl. Spectrosc. 2007. Vol. 61. No. 3. pp. 333–337. 30. Kuss H. M., Lüngen S., Müller G., Thurmann U. Comparison of spark OES methods for analysis of inclusions in iron base matters. Anal. Bioanal. Chem. 2002. Vol. 374. No. 7-8. pp. 1242–1249. |