Journals →  Gornyi Zhurnal →  2021 →  #4 →  Back

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
ArticleName New reagent regimes for potash flotation
DOI 10.17580/gzh.2021.04.12
ArticleAuthor Konobeevskikh A. V., Gurkova T. M., Afonina E. I., Panteleeva N. N.
ArticleAuthorData

Branch of "VNII Galurgii" JSC in Saint Petersburg:

A. V. Konobeevskikh, Head of Laboratory of Flotation and Reagents, Aleksey.Konobeevskih@uralkali.com
T. M. Gurkova, Leading Researcher
E. I. Afonina, Leading Researcher
N. N. Panteleeva, Leading Researcher, Candidate of Engineering Sciences

Abstract

The article presents the results of the VNII Galurgii’s studies into development of reagent regimes for flotation of potash ores of the Upper Kama deposit in fat solutions of potassium and sodium chlorides. The influence of the temperature of the saline solution and the content of magnesium chloride in it on the efficiency of aliphatic amines—collector of sylvin—was investigated. An alternative ethoxylated sludge collector for flotation de-sludging of potash ores is tested. The effect of a modified sludge depressant obtained by the synthesis of urea and formaldehyde is studied. The developed reagents are tested in full-scale processing of potash ore with variable composition and an increased content of sludge-forming silicate-carbonate and anhydrite water-insoluble impurities have been carried out. It is shown that the process stability and the production performance improve. Application of the sludge depressant in flotation of potash ore of variable composition allows stabilization of sylvin flotation and reduction in potassium chloride loss owing to stimulation of potassium chloride flotation from coarse tailings, which enables the decrease in the sylvin collector consumption and favors improvement of the process performance.

keywords Potash ore, flotation, sludge, sludge collector, sludge depressor, sylvin collector
References

1. Ivanova T. A., Zimbovskiy I. G., Getman V. V., Karkeshkina A. Yu. Study on the possibility of using dithiopyrilmethane in flotation of sulfide minerals. Obogashchenie Rud. 2018. No. 6. pp. 38–44. DOI: 10.17580/or.2018.06.07
2. Lavrinenko A. A. State and trends of development of flotation machines for solid mineral concentration in Russia. Tsvetnye Metally. 2016. No. 11. pp. 19–26. DOI: 10.17580/tsm.2016.11.02
3. Karnaukhov S. N., Plyasovitsa S. S., Ivanova N. V. Research of skarn deposit copper ore flotation technology. Obogashchenie Rud. 2018. No. 2. pp. 19–22. DOI: 10.17580/or.2018.02.04
4. Tusupbaev N. K., Semushkina L. V., Turysbekov D. K., Sugurbekova A. K., Mukhamedilova A. M. Flotation of mineral mining waste using a composite reagent. Theory and Practice of Ore and Waste Processing : International Scientific-and-Practical Conference Proceedings. Yekaterinburg, 2016. pp. 214–216.
5. Dikhtievskaya L. V., Shlomina L. F., Osipova E. O., Shevchuk V. V., Mozheyko F. F. Flotation enrichment of potash ores of different mineralogical composition. Izvestiya Natsionalnoy akademii nauk Belarusi. Seriya khimicheskikh nauk. 2019. Vol. 55, No. 3. pp. 277–287.
6. Titkov S. N., Mamedov A. I., Solovev E. I. Potash ore processing. Moscow : Nedra, 1982. 216 p.
7. Teterina N. N., Sabirov R. H., Skvirskiy L. Y., Kirichenko L. N. Technique for flotation beneficiation of potash ores). Perm – Solikamsk – Berezniki : Solikamskaya tipografiya, 2002. 484 p.
8. Jančaitienė K., Šlinkšienė R. Influence of cellulose additive on the granulation process of potassium dihydrogen phosphate. Chemical Industry and Chemical Engineering Quarterly. 2020. Vol. 26, No. 4. pp. 359–367.
9. Bo Feng, Wenpu Zhang, Yutao Guo, Tao Wang, Guodong Luo et al. The flotation separation of galena and pyrite using serpentineas depressant. Powder Technology. 2019. Vol. 342. pp. 486–490.
10. Zhong Ai, Shoujiang Li, Yunliang Zhao, Hao Yi, Licai Chen et al. Effect of magnesium ion on sylvite flotation: An experiment and molecular dynamic simulation study. Chemical Physics Letters. 2020. Vol. 752. DOI: 10.1016/j.cplett.2020.137586
11. Laskowski J. S. From amine molecules adsorption to amine precipitate transport by bubbles: A potash ore flotation mechanism. Minerals Engineering. 2013. Vol. 45. pp. 170–179.
12. Hainan Wang, Wenqing Yang, Xiaokang Yan, Lijun Wang, Yongtian Wang, Haijun Zhang. Regulation of bubble size in flotation: A review. Journal of Environmental Chemical Engineering. 2020. Vol. 8, Iss. 5. DOI: 10.1016/j.jece.2020.104070
13. Yue Hua Tan, James A. Finch Surfactant Structure-Property Relationship: Effect of Alkyl Chain Length and Methyl Branch Position in Aliphatic Alcohols and Polyglycol Ethers on Bubble Rise Velocity. Proceedings of the XV Balkan mineral Processing Congress. Sozopol, 2013. pp. 423–427.
14. Greff R. A., Setzkorn E. A., Lesle W. D. A colorimetric method for the determination of parts/million of nonionic surfactants. Journal of the American Oil Chemists’ Society. 1965. Vol. 42, Iss. 3. pp. 180–185.
15. Titkov S. N., Panteleeva N. N., Konoplev E. V. et al. Method of floating enrichment of ores. Patent RF, No. 2278739. Applied: 07.07.2004. Published: 27.06.2006. Bulletin No. 18.
16. Busygin V. M., Sabirov R. Kh., Novoselov V. A. et al. Method of floatation concentration of potassium ores. Patent RF, No. 2237521. Applied: 23.05.2003. Published: 10.10.2004.
17. Titkov S. N., Panteleeva N. N., Gurkova T. M. Use of polymer reagents for processing of potash ores containing clay slimes. Polymers in Mineral Processing : Proceedings of the Third UBC-McGill Bi-annual International Symposium on Fundamentals of Mineral Processing. Quebec, 1999. pp. 375–392.
18. Titkov S. N., Panteleeva N. N., Gurkova T. M. Physicochemical patterns of flotation-based separation of salts. Actual Problems in Natural Salt Extraction and Processing : Collection of Scientific Papers. Saint-Petersburg, 2001. Vol. 2. pp. 11–24.

Full content New reagent regimes for potash flotation
Back