Journals →  Tsvetnye Metally →  2021 →  #4 →  Back

METAL PROCESSING
ArticleName Comparative analysis of modern methods of production of Al – Zr ligatures
DOI 10.17580/tsm.2021.04.13
ArticleAuthor Filatov A. A., Suzdaltsev A. V., Zaikov Yu. P.
ArticleAuthorData

Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia:

A. A. Filatov, Junior Researcher of the Laboratory for Materials and Devices for Environmentally Friendly Energy1, e-mail: fill.romantic@yandex.ru

 

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia:
A. V. Suzdaltsev, Head of the Laboratory of Radiochemistry, Candidate of Chemical Sciences, e-mail: suzdaltsev_av@mail.ru
Yu. P. Zaikov, Professor, Supervisor, Doctor of Chemical Sciences, e-mail: zaikov@ihte.uran.ru

Abstract

A brief overview of modern industrial and experimental methods for the synthesis of aluminozirconium ligatures is performed. The basic regularities of the proceeding processes, and also properties of the obtained ligatures are considered, technical and economic indicators and prospects of development of the considered technologies are estimated. The comparative estimation of key parameters of the most promising technologies for industrial application is carried out, the influence of temperature, a mode of synthesis and a kind of initial raw materials on profitability of the process is estimated. Aluminothermic and electrolytic methods of ligature synthesis are considered in more detail, the views of other authors on the kinetics of ongoing processes are taken into account, and an overview of the influence of electrolyte composition and electrolysis mode on the structure and properties of produced alloys is presented. It has been shown that, depending on the method, in a wide temperature range (80 – 1000 oC), Al – Zr master alloy with a zirconium content up to 57 wt.% can be obtained. However, all existing methods for the production of Al – Zr master alloys have significant drawbacks, which lead to the relatively high cost of the master alloys, the presence of hazard waste and low production efficiency. It is concluded that along with the current methods of direct fusion of metals and aluminothermic synthesis, it is promising to obtain ligatures by electrolysis of oxide-fluoride melts KF – NaF – AlF3 using zirconium oxide as the main metalcontaining raw material. The results of experimental testing of a new method for obtaining Al – Zr master alloys via electrolysis of oxide-fluoride melts are presented. It has been established that the developed technology makes it possible to maximize the extraction of zirconium from the oxide, to continuously obtain master alloys with a high zirconium content, excluding the accumulation of unclaimed waste.
The study was performed with the financial support of the Russian Foundation for Basic Research within the research project No. 19-33-90144.

keywords Aluminum, zirconium, ligature, alloy, electrolysis, melt, electrochemistry
References

1. Belov N. A., Alabin A. N., Matveeva I. A., Eskin D. G. Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets. Trans. Nonferrous Metals Society of China. 2015. Vol. 25, Iss. 9. pp. 2817–2826.
2. Brodova I. G., Bashlykov D. V., Manukhin A. B., Stolyarov V. V., Soshnikova E. P. Formation of nanostructure in rapidly solidified Al – Zr alloy by severe plastic deformation. Scripta Materialia. 2001. Vol. 44, No. 8-9. pp. 1761–1764.
3. Belov N. A., Alabin A. N., Teleuova A. R. Comparative analysis of alloying additives as applied to the production of heat-resistant aluminum-base wires. Metal Science and Heat Treatment. 2012. Vol. 53. pp. 455–459.
4. Ogorodov D. V., Popov D. А., Trapeznikov А. V. Methods of obtaining Al – Zr ligature (review). Trudy VIAM. 2015. No. 11. pp. 2–11.
5. Napalkov V. I., Makhov S. V. Alloying and modification of aluminum and magnesium. Moscow : MISiS, 2002. 374 p.
6. Znamenskij L. G. Method of preparation of ligature of aluminum — refractory metal. Patent RF, No. 2232827, Applied: 03.02.2003. Published: 20.07.2004.
7. Agafonov S. N., Krasikov S. А., Vedmid L. B., Zhidovinova S. V., Ponomarenko А. А. Metallothermic reduction of zirconium from oxides. Tsvetnye Metally. 2013. No. 12. pp. 66–70.
8. Pat. 105274372 CN. Method for preparing aluminum-zirconium alloy. Bao X., Ye D., Li X., Zhu Z., Li H.; published. 2016.01.27.
9. Pat. 104388713 CN. Preparation method of aluminum-zirconium alloy. Bao X., Li X., Hu T., Chen Q., Fan Zh.; published. 2015.03.04.
10. Liu F., Ding Ch., Tao W., Hu X., Gao B., Shi Zh., Wang Zh. Preparation of aluminum-zirconium master alloy by aluminothermic reduction in cryolite melt. JOM. 2017. Vol. 69. pp. 2644–2647.
11. Makhov S. V., Moskvitin V. I., Popov D. A. Patent RF, No. 2482209. Method for production of aluminium-zirconium ligature (versions). Applied: 19.03.2012. Published: 20.05.2013. Bulletin No. 14.
12. Korshunov B., Safonov V., Drobot D. Melting diagrams of halide systems of transition elements. Moscow : Metallurgiya, 1977. 248 p.
13. Kozlovskiy G. А., Makhov S. V. Moskvitin V. I., Popov D. А. Technical and economic efficiency of production of aluminum master alloys containing Ti, Zr and B from different raw materials. Tsvetnye Metally. 2017. No. 3. pp. 53–56. DOI: 10.17580/tsm.2017.03.08.
14. Makhov S. V., Moskvitin V. I., Popov D. А. Basis of kinetics and technology of aluminothermic obtaining of Al – Zr ligature from ZrO2 in chloride-fluoride salt melts. Tsvetnye Metally. 2014. No. 11. pp. 69–72.

15. Moskvitin V. I., Popov D. А, Makhov S. V. Thermodynamics basics of aluminothermic zirconium reduction from ZrO2 in chloride-fluoride melts. Tsvetnye Metally. 2012. No. 4. pp. 43–46.
16. Yatsenko S. P., Khokhlova N. А., Pasechnik L. А, Sabirzyanov N. А. Obtaining aluminum-based ligatures by the method of high-temperature exchange reactions in salt melts. III. Multicomponent modifying aluminum ligatures with scandium, zirconium and hafnium. Rasplavy. 2010. No. 2. pp. 89–94.
17. Skachkov V. М., Yatsenko S. P. Obtaining of Sc, Zr, Hf and Y base metals on the basis of aluminum by method of high-temperature exchange reactions in salt melts. Tsvetnye Metally. 2014. No. 3. pp. 22–26.
18. Kawase M., Ito Y. The electroformation of Zr metal, Zr – Al alloy and carbon films on ceramic. Journal Applied Electrochemistry. 2003. Vol. 33. pp. 785–793.
19. Ueda M., Teshima T., Matsushima H., Otsuka T. Electroplating of Al – Zr alloys in AlCl3 – NaCl – KCl molten salts to improve corrosion resistance of Al. Journal of Solid State Electrochemistry. 2015. Vol. 19. pp. 3485–3489.
20. Vukicevic N. M., Jovicevic J. N. Aluminiumzirconium alloys obtained by Al underpotential deposition onto Zr from low temperature AlCl3 – NaCl molten salts. Journal of Serbian Chemical Society. 2019. Vol. 84. pp. 1329–1344.
21. Tsuda T., Hussey C. L., Stafford G. R., Kongstein O. Electrodeposition of Al – Zr alloys from Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt. Journal of Electrochemical Society. 2004. Vol. 151, No. 7. pp. 447–54.
22. Elshina L. A. Patent RF, No. 2515730. Chemical-electric method for production of aluminium-zirconium alloys. Applied: 16.11.2012. Published: 20.05.2014. Bulletin No. 14.
23. Nerubashenko V. V., Voleynik V. V., Krymov А. P., Galochka V. G., Napalkov V. I. Obtaining Al – Zr ligature in electrolysis baths. Tsvetnye Metally. 1978. No. 3. pp. 36–38.
24. Li M., Li Y., Wang Zh. Electrochemical reduction of zirconium oxide and co-deposition of Al – Zr alloy from cryolite molten salt. Journal Electrochemical Society. 2019. Vol. 166, No. 2. D65–D68.
25. Pershin P. S., Filatov А. А., Suzdaltsev А. V., Zaykov Yu. P. Aluminothermal production of Al – Zr alloys in KF – AlF3. Rasplavy. 2016. No. 5. pp. 413–421.
26. Pershin P. S., Kataev A. A., Filatov A. A., Suzdaltsev A. V., Zaikov Yu. P. Synthesis of Al – Zr alloys via ZrO2 aluminum-thermal reduction in KF – AlF3 – based melts. Metallurgical and Materials Transactions B. 2017. Vol. 48. pp. 1962– 1969.
27. Robert E., Olsen J. E., Danek V., Tixhon E., Ostvold T. et al. Structure and thermodynamics of alkali fluoride-aluminum fluoride-alumina melts. Vapor pressure, solubility, and Raman spectroscopic studies. Journal of Physical Chemistry B. 1997. Vol. 101. pp. 9447–9457.
28. Lyakishev N. P. Equilibrium diagrams of double metal systems: Handbook in 3 vol.: Vol. 1. Moscow : Mashinostroenie, 1996.
29. Filatov А. А., Pershin P. S., Nikolaev А. Yu., Suzdaltsev А. V. Obtaining Al – Zr alloys and ligatures during the electrolysis of KF – NaF – AlF3 – ZrO2 melts. Tsvetnye Metally. 2017. No. 11. pp. 27–31. DOI: 10.17580/tsm.2017.11.05.
30. Suzdaltsev А. V., Filatov А. А., Nikolaev А. Yu., Pankratov А. А., Molchanova N. G. Et. al. Extraction of scandium and zirconium from their oxides by electrolysis of oxide-fluoride melts. Rasplavy. 2018. No. 1. pp. 5–13.
31. Filatov A. A., Pershin P. S., Suzdaltsev A. V., Nikolaev A. Yu., Zaikov Yu. P. Synthesis of Al – Zr master alloys via the electrolysis of KF – NaF – AlF3 – ZrO2 melts. Journal of the Electrochemical Society. 2018. Vol. 165. No. 2. E28–E34.
32. Vorobiev A., Suzdaltsev A. V., Pershin P., Galashev A., Zaikov Yu. Structure of MF – AlF3 – ZrO2 (M = K, Na, Li) ionic melts. Journal Molecular Liquids. 2019. Vol. 299. 112241.
33. Pershin P. S., Filatov A. A., Nikolaev A. Yu., Suzdaltsev A. V., Zaikov Yu. P. Cathodic processes in the synthesis of Al – Zr alloys in the KF – AlF3 – Al2O3 – ZrO2. melt. Butlerovskie soobshcheniya. 2017. Vol. 49. No. 2. pp. 110–116.
34. Filatov A. A., Suzdaltsev A. V., Nikolaev A. Yu., Zaikov Yu. P. Kinetics of electric release of zirconium and aluminum from KF – AlF3 – ZrO2 melts. Rasplavy. 2019. No. 3. pp. 287–304.
35. Nikolaev A. Yu., Suzdaltsev A. V., Zaikov Yu. P. Cathode process in the KF – AlF3 – Al2O3 melts. Journal of Electrochemical Society. 2019. Vol. 166, Iss. 15. D784–D791.
36. Suzdaltsev A. V., Filatov A. A., Nikolaev A. Yu., Pershin P. S., Zaikov Yu. P. Method for obtaining aluminum-zirconium ligatures. Patent RF, No. 2658556. Applied: 24.08.2017. Published: 21.06.2018. Bulletin No. 18.

Language of full-text russian
Full content Buy
Back