Журналы →  Chernye Metally →  2021 →  №5 →  Назад

Machine-building technologies
Название Study of dependence of hardness of steel cylindrical parts on technological parameters
DOI 10.17580/chm.2021.05.12
Автор O. V. Pantyukhin, S. A. Vasin
Информация об авторе

Tula State University (Tula, Russia):
O. V. Pantyukhin, Cand. Eng., Associate Prof., e-mail: olegpantyukhin@mail.ru
S. A. Vasin, Dr. Eng., Prof., e-mail: vasin_sa53@mail.ru

Реферат

On the basis of the conducted experiments with the use of pressing and thermal equipment, a mathematical model of the value of the wall hardness of the semi-hot extrusion machine as a key process in the manufacturing technology of steel cylindrical hollow parts manufactured for the mechanical engineering and mining industries was obtained using experimental planning methods. It is noted that the technological process of manufacturing steel cylindrical hollow parts with a key operation of double-sided semi-hot extrusion with distribution is a promising process that allows to ensure high plasticity and strength of the semi-finished product material and obtain the required mechanical properties of the metal. The developed mathematical model made it possible to solve the actual problem of choosing the optimal modes and parameters of the semi-hot extrusion process (processing temperature, degree of deformation, temperature of the cooling medium, geometry of the working tool) and to provide the ability to control the formed properties of the product together with the finishing operations of drawing. Graphical dependences of the wall hardness of the semifinished product on the processing temperature at different values of the radius of the working part of the punch, the degree of deformation and the temperature of the cooling medium are constructed and analyzed. Analysis of the obtained graphs allowed us to identify the parameters that have the greatest impact on the wall hardness of the semi-finished product.

Ключевые слова Semi-hot extrusion; hardness; metal structure; degree of deformation, processing temperature, cooling medium, experiment planning, mathematical model, product quality
Библиографический список

1. Gilev А. V., Chesnokov V. G., Lavrova N. B., Khomich L. V., Gileva N. N., Korostovenko L. P. Basics of operation of mining machines and equipment. Krasnoyarsk: Sibirskiy federalny universitet, 2011. 276 p.
2. Vildeman V. E., Tretyakov М. P., Tretyakova Т. V., Bulbovich R. V., Slovikov S. V., Babushkin А. V., Ilyinych А. V., Lobanov D. S., Ipatova А. V. Experimental studies of properties of materials under complex  thermomechanical effects. Moscow: Izdatelstvo fiziko-matematicheskoy i tekhnicheskoy literatury. 2012. 204 p.
3. Olt J. J., Maksarov V. V., Krasnyy V. A. Study of bearing units wear resistance of engines career dump trucks, working in fretting corrosion conditions. Journal of Mining Institute. 2019. Vol. 235. pp. 70–77.
4. Maksarov V. V., Olt J. J., Krasnyy V. A. Provision of adhesion strength of gasthermal coatings on piston rings of quarry transport engines. Journal of Mining Institute. 2018. Vol. 229. pp. 77–83.
5. Maisuradze M. V., Kuklina A. A. Numerical and experimental investigation of the heat treated steel part microstructure and hardness. Materials Science Forum. 2019. Vol. 946 MSF. pp. 346–350.
6. Llorca-Isern N., Biserova-Tahchieva A., Lopez-Jimenez I., Roca A., Calliari I., Cabrera J. M. Influence of severe plastic deformation in phase transformation of superduplex stainless steels. Journal of Materials Science. 2019. Vol. 54, Iss. 3. pp. 2648–2657.
7. Xiao G., Xia Q., Long J., Chen W. Research on the forming quality and mechanical properties of cylindrical spun parts with ultrafine-grained structure during power spinning. The International Journal of Advanced Manufacturing Technology. 2018. Vol. 97, Iss. 5–8. pp. 2979–2986.
8. Agrawal A. K., Singh A. Limitations on the hardness increase in 316l stainless steel under dynamic plastic deformation. Materials Science and Engineering: A. 2017. Vol. 687. pp. 306–312.
9. Milad M., Zreiba N., Elhalouani F., Baradai C. The effect of cold work on structure and properties of aisi 304 stainless steel. Journal of Materials Processing Technology. 2008. Vol. 203, Iss. 1–3. pp. 80–85.
10. Kral P., Dvorak J., Sklenicka V., Kucharova K., Kvapilova M., Takizawaa Y., Masuda T., Horita Z., Svobodova M. Microstructure refinement in martensitic creep resistant steel via severe plastic deformation. NANOCON 2018 – Conference Proceedings, 10th Anniversary International Conference on Nanomaterials – Research and Application. 2019. pp. 597–602.
11. Pazilova U. А., Khlusova Е. I., Knyazyuk Т. V. Influence of hot plastic deformation modes on the structure and properties of hardened hot-rolled economically alloyed high-strength steel. Neorganicheskie Materialy: Prikladnye Issledovaniya. 2018. Vol. 9. No. 6. pp. 1051–1059.
12. Gaydar S. М. Experiment planning and analysis. Moscow: FGNU "Rosinformagrotekh", 2015. 548 p.
13. Androsenko О. S., Mayachenko Е. P. Mathematical methods of experiment planning in the study of the metal heat treatment process. Prilozhenie matematiki v ekonomicheskikh i technicheskikh issledovaniyakh. 2014. No.1 (4). pp. 219–225.
14. Antonyuk F. I, Kalmykov V. V., Mkrtchyan А. B. Application of statistical analysis methods to estimate the change in cylinder diameter during cold upsetting. Fundamentalnye issledovaniya. 2016. No.8-1. pp. 9–13.
15. Antonyuk F. I., Kuznetsov I. V., Sorokin P. S., Ermachkov R. О. Technological factors of increasing the accuracy of diametrical sizes of piece (measured) billets made by a cold upsetting. Sovremennye naukoemkie tekhnologii. 2018. No.7. pp. 14–19.
16. Ermachkov R. О., Vyatkin А. G. Influence of methods for adjusting the technological system on accuracy of height sizes at the upsetting on the hydraulic press. Elektronny zhurnal “Nauka, tekhnika i obrazovanie”. 2019. No.2 (24). pp. 16–24.
17. Lavrinenko V. Yu., Govorov V. А. Development of a mathematical model for the process of backward extrusion of forgings “glass” with minimal non-uniform thickness. Izvestiya Tulskogo gosudarstvennogo universiteta. Technicheskie nauki. 2018. Iss. 6. pp. 39–49.
18. Lanskoy Е. N., Antonyuk F. I. Analysis of the accuracy of cold extrusion of hollow forgings by statistical methods. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2001. No.5. pp. 14–20.
19. Panfilov G. V., Sukhonin V. А., Kalinin S. S. Planning of a multifactor experiment on radial stamping of end sections of a cross-shaped profile. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2016. Iss. 7. Part. 2. pp. 9–17.
20. Petrov V. I. On the influence of tool geometry on the force of backward semi-hot extrusion. Izvestiya Tulskogo gosudarstvennogo universiteta. Avtomobilny transport. 2003. Iss. 7. pp. 124–127.
21. Petrov V. I. Technological features of semi-hot extrusion of drive chain rollers. Izvestiya Tulskogo gosudarstvennogo universiteta. Mekhanika deformiruemogo tverdogo tela i obrabotka metallov davleniem. 2004. Iss. 3. pp. 93–100.
22. Petrov V. I. Features of processes of semi-hot stamping of alloy steels. Izvestiya Tulskogo gosudarstvennogo universiteta. Technicheskie nauki. 2005. Iss. 9. pp. 124–127.

Language of full-text русский
Полный текст статьи Получить
Назад