Journals →  Non-ferrous Мetals →  2021 →  #1 →  Back

METAL PROCESSING
ArticleName Overview of nickel-based filler metals for brazing of austenitic stainless steels
DOI 10.17580/nfm.2021.01.06
ArticleAuthor Penyaz M. A., Ivannikov A. A., Sevryukov O. N., Kalin B. A.
ArticleAuthorData

National Research Nuclear University “MEPHI”, Moscow, Russia:

M. A. Penyaz, Post-Graduate Student, Department No. 9 “Physical problems of materials science”, e-mail: mapenyaz@mephi.ru
A. A. Ivannikov, Senior Lecturer, Department No. 9 “Physical problems of materials science”, e-mail: ivannikov7@rambler.ru
O. N. Sevryukov, Associate Professor, Department No. 9 “Physical problems of materials science”, e-mail: sevr54@mail.ru
B. A. Kalin, Professor, Department No. 9 “Physical problems of materials science”, e-mail: bakalin@mephi.ru

Abstract

For the manufacture of thin-walled precision structures with complex geometry, the method of brazing is used. It allows to obtain joints with a given structural-phase state, high mechanical characteristics and resistance to corrosion. This overview examines alloys based on copper, precious metals, nickel and iron, which are actively used for joining steels. The data on the operational characteristics of the joints obtained by brazing using nickel-based filler metals are presented and structured. Special attention is paid to nickel braze alloys based on Ni – B, Ni – Si – B, Ni – Cr – B, Ni – Cr – Si, Ni – Cr – Si – B, Ni – Mn, Ni – Cr – P, Ni – Si – Be systems. Such alloys are the most widespread and applicable throughout the world. The overview describes the main phases that are formed in the seams and the heat-affected zones of joints. The dependences of the technological parameters of the process, such as the temperature-time mode of brazing and the size of the gap on the microstructure of the joints and their mechanical characteristics, are shown. The corrosion resistance of steel joints brazed by various nickel-based filler metals is considered. The overview is based on the extensive experience of MEPhI in the production and development of rapidly solidified amorphous-crystalline foils based on nickel. In addition to the world experience, the overview considers works of the research team of the MEPhI laboratory, which has been working on this topic since 1995. This overview will help technologists and designers of energy-intensive equipment to determine the trajectory for the selection of the filler metal composition to obtain the optimal technological parameters, mechanical characteristics and corrosion resistance of the joints applicable to a specific design problem.

The reported study was funded by RFBR, project number 20-12-50106.

keywords Austenitic steel, filler metal, brazing, structural phase state, energy-intensive technology, nickel, TLPbonding
References

1. Way M., Willingham J., Goodall R. Brazing Filler Metals. International Materials Reviews. 2020. Vol. 65, Iss. 5. pp. 257–285. DOI: 10.1080/09506608.2019.1613311
2. Simöes S. Diffusion Bonding and Brazing of Advanced Materials. Metals. 2018. Vol. 8, Iss. 11. pp. 959. DOI: 10.3390/met8110959
3. Dieter S., Fortuna D. Selecting Materials for Brazing a Honeycomb in Turbine Engines. Welding Journal. Vol. 93, Iss. 2. 2014. pp. 44–48.
4. Ulan kyzy S., Völkl R., Munz O., Fischer T., Glatzel U. The Effect of Brazing on Microstructure of Honeycomb Liner Material Hastelloy X. Journal of Materials Engineering and Performance. 2019. Vol. 28, Iss. 4. pp. 1909–1913. DOI: 10.1007/s11665-019-03910-w
5. Eustathopoulos N., Hodaj F., Kozlova O. The Wetting Process in Brazing. In book: Advances in Brazing: Science, Technology and Applications. 2013. pp. 3–30. DOI: 10.1533/9780857096500.1.3
6. Jiang W., Gong J. M., Tu S. T. Effect of Holding Time on Vacuum Brazing for a Stainless Steel Plate-Fin Structure. Materials and Design. 2010. Vol. 31. Iss. 4. pp. 2157–2162. DOI: 10.1016/j.matdes.2009.11.001
7. Mizokami Y., Igari T., Kawashima F., Sakakibara N., Tanihira M., Yuhara T., Hiroe T. Development of Structural Design Procedure of Plate-fin Heat Exchanger for HTGR. Nuclear Engineering and Design. 2013. Vol. 255. pp. 248–262.
8. June Kee Min, Ji Hwan Jeong, Man Yeong Ha, Kui Soon Kim. High Temperature Heat Exchanger Studies for Applications to Gas Turbines. Heat Mass Transfer. 2009. Vol. 46, Iss. 2. pp. 175–186. DOI: 10.1007/s00231-009-0560-3
9. Alfred I., Nicolaus M., Hermsdorf J., Kaierle S., Möhwald K., Maier H.-J., Wesling V. Advanced High Pressure Turbine Blade Repair Technologies. Procedia CIRP. 2018. Vol. 74. pp. 214–217. DOI: 10.1016/j.procir.2018.08.097
10. Nicolaus M., Rottwinkel B., Alfred I., Möhwald K., Nölke C., Kaierle S., Maier H. J., Wesling V. Future Regeneration Processes for High-Pressure Turbine Blades. CEAS Aeronautical Journal. 2017. Vol. 9, Iss. 1. pp. 85–92. DOI: 10.1007/s13272-017-0277-9
11. MacDonald W. D., Eagar T. W. Transient Liquid Phase Bonding. Annual Review of Materials Science. 1992. Vol. 22, Iss. 1. pp. 23–46.
12. Noto H., Kasasa R., Kimura A., Ukai S. Grain Refinement of Transient Liquid Phase Bonding Zone Using ODS Insert Foil. Journal of Nuclear Materials. 2013. Vol. 442, Iss. 1–3. pp. S567–S571. DOI: 10.1016/j.jnucmat.2013.04.054
13. Jalilian F., Jahazi M., Drew R. A. L. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni – Si – B filler metal. Materials Science and Engineering: A. 2006. Vol. 423, Iss. 1–2. pp. 269–281.
14. Shakerin S., Maleki V., Ziaei S. A., Omidvar H., Rahimipour M. R., Mirsalehi S. E. Microstructural and Mechanical Assessment of Transient Liquid Phase Bonded Commercially Pure Titanium. Canadian Metallurgical Quarterly. 2017. Vol. 56, Iss. 3. pp. 360–367. DOI: 10.1080/00084433.2017.1349024
15. Abdolvand R., Atapour M., Shamanian M., Allafchian A. The Effect of Bonding Time on The Microstructure and Mechanical Properties of Transient Liquid Phase Bonding bet ween SAF 2507 and AISI 304. Journal of Manufacturing Processes. 2017. Vol. 25. pp. 172–180. DOI: 10.1016/j.jmapro.2016.11.013
16. Cook G. O., Sorensen C. D. Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding. Journal of Materials Science. 2011. Vol. 46, Iss. 16. pp. 5305–5323.
17. Arafin M., Medraj M, Turner D. et al. Effect of Alloying Elements on the Isothermal Solidification During TLP Bonding of SS 410 and SS 321 Using a BNi-2 Interlayer. Materials Chemistry and Physics. 2007. Vol. 106, Iss. 1. pp. 109–119.
18. Chen J. Vacuum Braze of Stainless Steel Joints With Wide Clearance. Journal of the University of Petroleum, China (Natural Science Edition). 1999. Vol. 23. Iss. 6. pp. 53–56.
19. Corbin S. F., Murray D. C., Bouthillier A. Analysis of Diffusional Solidification in a Wide-Gap Brazing Powder Mixture Using Differential Scanning Calorimetry. Metallurgical and Materials Transactions A. 2016. Vol. 47, Iss. 12. pp. 6339–6352. DOI: 10.1007/s11661-016-3799-6
20. Yan G., Bhowmik A., Nagarajan B., Song X., Tan S. C., Tan M. J. Bonding Temperature Effects on the Wide Gap Transient Liquid Phase Bonding of Inconel 718 Using Bni-2 Paste Filler Metal. Applied Surface Science. 2019. Vol. 484. pp. 1223–1233. DOI: 10.1016/j.apsusc.2019.04.070
21. Huang X., Miglietti W. Wide Gap Braze Repair of Gas Turbine Blades and Vanes – a Review. Journal of Engineering for Gas Turbines and Power. 2012. Vol. 134. Iss 1. DOI: 10.1115/1.4003962

22. Sakai M., Sasaki T., Miyazawa Y. Mechanism of Void Formation During Brazing of Ni Paste Brazing Filler Metal. Materials Science Forum. 2021. Vol. 1016. pp. 1218–1222.
23. Sharma A., Lee S.-J., Oh J.-H., Jung J. P. AISI 304 Steel Brazing Using a Flexible Brazing Foil Fabricated by Tape Casting Method. Journal of Korean Institute of Metals and Materials. 2017. Vol. 55, Iss. 12. pp. 836–844.
24. Rabinkin A. Brazing with Amorphous Foil Performs. Advanced Materials and Processes. 2001. Vol. 159, Iss. 6. pp. 65–67.
25. Cadden C. H. Brazing. Encyclopedia of Materials: Science and Technology. 2006. pp. 1–7.
26. Fortuna D. Manufacture of Braze and Solder Alloy Powders by Atomization. Welding Journal. 2004. Vol. 83, Iss. 10. pp. 40–44.
27. ASM International. Handbook Committee. ASM handbook. 1996. 1057 p.
28. Paidar M., Ashraff Ali K., Ojo O. O., Mohanavel V., Vairamuthu J., Ravichandran M. Diffusion Brazing of Inconel 617 and 321 Stainless Steel by Using AMS 4772 Ag Interlayer. Journal of Manufacturing Processes. 2021. Vol. 61. pp. 383–395.
29. Hebda M., Kaczor P., Miernik K. Vacuum Brazing of Stainless Steel Depending on the Surface Preparation Method and Temperature of the Process. Archives of Metallurgy and Materials. 2019. Vol. 64, Iss. 1. pp. 5–11.
30. Shiue R.-K., Wu S.-K., Chen C.-P., Yang S.-H. Infrared brazing of Ti 50 Ni 50 shape memory alloy and 316L stainless steel with Au – 22Ni – 8Pd filler. Gold Bulletin. 2015. Vol. 48, Iss. 1-2. pp. 57–62. DOI: 10.1007/s13404-015-0160-6
31. Schmiedt-kalenborn A., Lingnau L., Manka M., Tillmann W., Walther F. Fatigue and Corrosion Fatigue Behaviour of Brazed Stainless Steel Joints AISI 304L / BAu-4 in Synthetic Exhaust Gas Condensate. Materials. 2019. Vol. 12, Iss. 7. p. 1040. DOI: 10.3390/ma12071040
32. Tillmann W., Wojarski L., Manka M., Trelenberg A. Investigation of the Brazing Characteristics of a New Iron-Based Brazing Filler Metal. Welding in the World. 2016. Vol. 60, Iss. 5. pp. 869–875. DOI: 10.1007/s40194-016-0346-4
33. Epelbaum C., Fontana M., Audebert F., Arcondo B. Joining Steel Tubes Employing Fe – Si – B Metallic. Journal of Materials Science. 2005. Vol. 40, Iss. 18. pp. 4867–4871.
34. Li H., Zhang X., Mao rs O., Zhao O., Lu Q., Chen Z. The Effect of Iron-Based Filler Metal Element on the Properties of Brazed Stainless Steel Joints for EGR Cooler Applications. Welding in the World. 2019. Vol. 63, Iss. 2. pp. 263–275.
35. Weinstein M., Lee L., Johnson L., Battenbough A., Osmanda A. M. Properties of Selected Nickel and Iron Based Brazing Filler Metals. 2015. URL: https://www.wallcolmonoy.com/wp-content/uploads/2015/05/Wall-Colmonoy-Properties-of-Selected-Ni-and-Fe-Based-Brazing-Filler-Metals.pdf (accessed: 19.05.2021)
36. Chorunov V. F. Fundamentals of Soldering Thin-Walled Structures from High-Alloy Steels. Kiev: Isdatelstvo Naukova Dumka, 2008. 238 p.
37. Khimushin F. F. Stainless Steels. Moscow: Metallurgiya, 1967. 800 p.
38. Physical Materials Science. Vol. 6, Pt.1: Structural Materials of Nuclear Engineering. Ed. by Kalin B. A. Moscow: MEPhI, 2008. 672 p.
39. Villars P., Okamoto H. Binary Phase Diagram: Datasheet from “PAULING FILE Multinaries Edition – 2012” in SpringerMaterials. URL: https://materials.springer.com/isp/phase-diagram/docs/c_0907931 (accessed: 19.05.2021)
40. Su Yu, Yu Zhishui, Yan Zhi, Li Jun, Huang Guo. Effects of Composite Nickel-base Boracic Brazing Filler on the Boride Near the Brazing Seam of 316L Stainless Steel. Advanced Materials Research. 2012. Vol. 535-537. pp. 730–733.
41. Wei Z., Jiang W., Song M., Xiao C., Tu S.-T. Effects of Element Diffusion on Microstructure Evolution and Residual Stresses in a Brazed Joint: Experimental and Numerical Modeling. Materialia. 2018. Vol. 4. pp. 540–548.
42. Penyaz M. A., Ivannikov A. A., Kalin B. A., Dzhumaev P. S. Thermal Fatigue Damage of Steel Joints Brazed with Various Nickel Filler Metals. Non-ferrous Metals. 2019. No. 1. pp. 33–39. DOI: 10.17580/nfm.2019.01.06
43. Zhou K., Zhang T. Induction Brazing of 304 Stainless Steel with a Metalloid-Free Ni – Zr – Ti – Al – Sn Amorphous Foil. Materials Transactions. 2017. Vol. 58, Iss. 4. pp. 663–667. DOI: 10.2320/matertrans.M2016319.
44. Park T.G., Yi S., Kim D. H. Development of New Nibased Amorphous Alloys Containing No Metalloid That Have Large Undercooled Liquid Regions. Scripta Materialia. 2000. Vol. 43, Iss. 2. pp. 109–114.
45. Ivannikov A. A., Sevryukov O. N., Penyaz M. A., Popov N. S. Development of Nickel-Based Filler Metal for Producing High-Strength Joints in Critical Products from Heat-Resistant Materials. Non-ferrous Metals. 2018. No. 2. pp. 43–49. DOI: 10.17580/nfm.2018.02.08
46. Huang X. Microstructure and Oxidation Behaviour of NGB and WGB Joints with Boron/Silicon Free Nickel Base Braze Alloys. Proceedings of the ASME Turbo Expo. 2020. Vol. 8. DOI: 10.1115/GT2020-14017.
47. Lukin V. I., Rylnikov V. S., Afanasyev-Khodykin A. N. A Nickel-Based Brazing Alloy for Brazing Creep-Resisting Alloys and Steels. Welding International. 2015. Vol. 29, Iss. 7. pp. 567–572.
48. Fedotov V. T., Suchkov A. N., Kalin B. A., Sevryukov O. N., Ivannikov A. A. Rapidly Quenched Filler Metal STEMET for Brazing of Materials of Modern Technology. Tsvetnye Metally. 2014. No. 12. pp. 32–37.
49. Moradi M. J., Emadoddin E., Omidvar H. The Joint Properties of A564-630 Stainless Steel Made by Transient Liquid Phase Bonding : Microstructural and Mechanical Strength Evaluation. Journal of Materials Engineering and Performance. 2020. Vol. 29, Iss. 7. pp. 4745–4753. DOI: 10.1007/s11665-020-04962-z.
50. Lamjiri R. J., Ekrami A. Transient Liquid Diffusion Bonding of AISI304 Stainless Steel with a Nickel Base Interlayer. Defect and Diffusion Forum. 2017. Vol. 380. pp. 48–54. DOI: 10.4028/www.scientific.net/DDF.380.48.
51. Lin C., Shiue R.-K., Wu S.-K., Huang H.-L. Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys. Entropy. 2019. Vol. 21, Iss. 3. 283. DOI: 10.3390/e21030283.
52. Lin C., Shiue R.-K., Wu S.-K., Lin Yu.-S. Dissimilar Infrared Brazing of CoCrFe(Mn)Ni Equiatomic High Entropy Alloys and 316 Stainless Steel. Crystals. 2019. Vol. 9, Iss.10. DOI: 10.3390/cryst9100518.
53. Ghaderi S., Karimzadeh F., Ashra A. Evaluation of Microstructure and Mechanical Properties of Transient Liquid Phase Bonding of Inconel 718 and Nano/Ultrafine-Grained 304L Stainless Steel. Journal of Manufacturing Processes. 2020. Vol. 49. pp. 162–174.
54. Ghaderi S., Karimzadeh F., Ashrafi A., Hosseini S. H. Effect of Pressure, Temperature and Homogenization on the Dissolution Behavior and Mechanical Properties of IN718 / AISI 304 During Transient Liquid Phase Bonding. Journal of Manufacturing Processes. 2020. Vol. 60. pp. 213–226.
55. Binesh B. Diffusion Brazing of IN718 / AISI 316L Dissimilar Joint : Microstructure Evolution and Mechanical Properties. Journal of Manufacturing Processes. 2020. Vol. 57. pp. 196–208.
56. Baharzadeh E., Shamanian M., Rafiei M., Mostaan H. Properties of IN X-750 / BNi-2 / SAF 2205 Joints Formed by Transient Liquid Phase Bonding. Journal of Materials Processing Technology. 2019. Vol. 274. 116297. DOI: 10.1016/j.jmatprotec.2019.116297.
57. Baharzadeh E., Shamanian M., Rafiei M., Mostaan H. Microstructural and Mechanical Evaluations of Transient Liquid Phase Bonded In X-750 / BNi-3 / SAF 2205. Journal of Materials Engineering and Performance. 2019. DOI: 10.1007/s11665-020-04620-4.
58. Jafari M., Rafiel M., Mostaan H. Effect of Solidification Mode on Microstructure and Mechanical Properties of AISI420 Steel to SAF2507 Steel Dissimilar Joint Produced by Transient Liquid Phase. Metals and Materials International. 2020. Vol. 26, Iss. 10. pp. 533–1544.
59. Tokunaga T., Nishio K., Ohtani H., Hesebe M. Phase Equilibria in the Ni – Si – B System. Materials Transactions. 2003. Vol. 44, Iss. 9. pp. 1651–1654.
60. Lugscheider E., Knotek O., Kloehn K. Development of Nickel-Chromium-Silicon Base Filler Metals. Journal of Welding Research Supplement. 1978. Vol. 57. Iss. 10. pp. 319–323.
61. Tokunaga T., Nishio K., Hasebe M. Thermodynamic Study of Phase Equilibria in the Ni–Si–B System. Journal of Phase Equilibria. 2001. Vol. 22, Iss. 3. pp. 291–299.
62. Siredey-Schwaller N., Hamel-Akr J., Peltier L., Hazotte A., Bocher P. Solidification sequence of Ni – Si – Cr ~3wt% B brazing alloys. Welding in the World. 2017. Vol. 61, Iss. 6. pp. 1253–1265. DOI: 10.1007/s40194-017-0503-4
63. Lebrun N., Perrot P., Serbruyns A., Tedenac J.-C., Effenberg G. (ed.). B – Ni – Si Ternary Phase Diagram Evaluation. Phase diagrams, crystallographic and thermodynamic data: Datasheet from MSI Eureka in SpringerMaterials. MSI Materials Science International Services GmbH, Stuttgart. 2014. URL: https://materials.springer.com/msi/docs/sm_msi_r_10_014653_01 (accessed: 19.05.2021)
64. Chen Y., Cui H., Lu B., Lu F. The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals. Materials. 2017. Vol. 10, Iss. 4. p. 385.
65. Chen Z. J., Yang C. J., Gu X. L., Wu C. D., Feng L. L. Effect of Brazing Temperature and Clearance on Microstructure and Mechanical Properties of 316L Stainless Steel Brazed Joints. Advanced Materials Research. 2012. Vol. 418–420. pp. 1242–1245.
66. Chen H., Gong J.-M., Tu S.-T. Numerical Modelling and Experimental Investigation of Diffusion Brazing SS304/ BNi2/SS304 Joint. Science and Technology of Welding and Joining. 2009. Vol. 14. Iss. 1. pp. 32–41.
67. Zorc B., Kosec L. Comparison of Brazed Joints Made with BNi-1 and BNi-7 Nickel-Base Brazing Alloys. Revista de Metalurgia. 2000. Vol. 36, Iss 2. pp. 100–107.
68. Kawakatsu I., Osawa T., Saito H. Brazed Joint Strength of Stainless Steel With Nickel Base Filler Metals. Nippon Kinzoku Gakkai-si. 1979. Vol. 43, Iss 11. pp. 1001–1007.
69. Moreau E. D., Corbin S. F. The Role of Base Metal Chromium in Determining the TLPB Behavior of Ni-Based Alloys Using a Boron-Containing Braze. Metallurgical and Materials Transactions A. 2020. Vol. 51, Iss 8. pp. 3906–3919.
70. Han W. P., Wan M., Zhao R., Kang H., Cheng C., Wang C. J. Effect of post-bond heat treatment on microstructural evolution and mechanical properties of brazed ultrathinwalled structure. Materials Science and Engineering: A. 2019. Vol. 742. pp. 680–691.
71. Logvenchev I. S., Ivannikov A. A., Volkov A. A., Arofikin N. V., Sevryukov O. N., Fedotov V. T., Suchkov A. N., Fedotov I. V., Skrytnyi V. I. The Brazing of Nickel Alloys for Nuclear Reactor with the Using of the Rapidly-Quenched Filler Metals. Inorganic Materials: Applied Research. 2014. Vol. 5, Iss. 3. pp. 263–267.
72. Bakhtiari R., Misaghi M., Eisaabadi B. Optimizing the Process Parameters for TLP Bonding of AISI 321 Stainless Steel. Metallography, Microstructure, and Analysis. 2020. Vol. 9, Iss. 2. pp. 239–251.
73. Maksimova S. V. Amorphous Filler Metals for Brazing of Stainless Steel and Titanium, and Structure Of Brazed Joints. Adhesion of Melts and Brazing of Materials. 2007. Vol. 40. pp. 70–81.
74. Alhazaa A., Haneklaus N. Diffusion Bonding and Transient Liquid Phase (TLP) Bonding of Type 304 and 316 Austenitic Stainless Steel — A Review of Similar and Dissimilar Material Joints. Metals. 2020. Vol. 10, Iss. 5. p. 613.
75. Penyaz M. A., Popov N. S., Ivannikov A. A., Sevryukov O. N. Alloying-Dependent Microstructure Influence on Corrosion Resistance of AISI 321 Cell Joints Brazed by Ni-Based Filler Metals. Non-ferrous Metals. 2020. No. 1. pp. 41–48. DOI: 10.17580/nfm.2020.01.07
76. Xiao C., Jiang W., Yu Y., Song M., Tu S.-T., Gong J. Influence of Borides Dissolution During the Homogenization Treatment on the Mechanical Properties and Fracture Behavior of Austenitic Stainless Steel Brazed Joints. Materials Science and Engineering: A. 2020. Vol. 782. 139200. DOI: 10.1016/j.msea.2020.139200.
77. Moreau E. D., Corbin S. F. Assessing the Influence of Cr and Fe in the Filler Metal on Dissolution and Isothermal Solidification Kinetics During TLPB of Ni-Based Superalloys. Metallurgical and Materials Transactions A. 2020. Vol. 51, Iss. 12. pp. 6307–6317.
78. Doroudi A., Dastgheib A., Omidvar H. The Bonding Temperature Effect of the Diffusion Brazing Inconel 625 Superalloy on the Microstructure Changes, Corrosion Resistance, and Mechanical Properties. Journal of Manufacturing Processes. 2020. Vol. 53. pp. 213–222.
79. Karlsson L., Nordén H., Odelius H. Overview no. 63. Non-equilibrium Grain Boundary Segregation of Boron in Austenitic Stainless Steel – I. Large Scale Segregation Behaviour. Acta Metallurgica. 1988. Vol. 36. Iss. 1. pp. 1–12.
80. Moreau E. D., Corbin S. F. Application of Diffusion Path Analysis to Understand the Mechanisms of Transient Liquid-Phase Bonding in the Ni – Si – B System. Metallurgical and Materials Transactions A. 2019. Vol. 50, Iss. 12. pp. 5678–5688.
81. Jang J. S. C., Shih H. P. Evolution Of Microstructure Of AISI 304 Stainless Steel Joint Brazed By Mechanically Alloyed Nickel Base Filler With Different Silicon Content. Journal of Materials Science Letters. 2003. Vol. 22, Iss. 1. pp. 79–82.
82. Tillmann W., Walther F., Manka M., Schmiedt A., Wojarski L., Eilers A., Reker D. W. Investigations of the Corrosion Damage Process of the Brazed Joint AISI 304L/BNi-2. Results in Physics. 2019. Vol. 12. pp. 1245–1252.
83. Schmiedt A., Manka M., Tillmann W., Walther F. Charac terisation of the Corrosion Fatigue Behaviour of Brazed AISI 304L/BNi-2 Joints in Synthetic Exhaust Gas Condensate. Welding in the World. 2018. Vol. 62, Iss 3. pp. 617–627.
84. Schmiedt A. et al. Influence of Condensate Corrosion on Tensile and Fatigue Properties of Brazed Stainless Steel Joints AISI 304L/BNi-2 for Automotive Exhaust Systems. Materialwissenschaft und Werkstofftechnik. 2018. Vol. 49, Iss. 3. pp. 249–263.
85. Otto J. L., Penyaz M., Schmiedt-Kalenborn A., Knyaze va M., Ivannikov A., Kalin B., Walther F. Effect of Phase Formation Due to Holding Time of Vacuum Brazed Aisi 304l/Nicrsib Joints on Corrosion Fatigue Properties. Journal of Materials Research and Technology. 2020. Vol. 9, Iss 5. pp. 10550–10558.
86. Ivannikov A. A., Penyaz M. A., Dzhumaev P. S., Bachurina D. M., Sevriukov O. N. Diffusion Brazing of Stainless Steels Influence of Ni–B Filler Alloy Composition. Welding in the World. 2021. Vol. 65. Iss. 2. pp. 317–328.
87. Hartmann T., Nützel D. NiFe Brazing Foils with Melting Temperatures < 1000°C. Proceedings of the 8th International Conference on Brazing, High Temperature Brazing and Diffusion Bonding, LÖT 2007, Aachen (DVS Berichte 243). 2007. pp. 23–27.
88. Ivannikov A., Fedotov V., Suchkov A., Penyaz M., Fedotov I., Tarasov B. The Use of Ni – Cr – Si – Be Filler Metals for Brazing of Stainless Steels. IOP Conference Series: Materials Science and Engineering. 2016. Vol. 130. 012045. DOI: 10.1088/1757-899x/130/1/012045
89. Ivannikov A., Kalin B., Suchkov A., Penyaz M., Yurlova M. Development of Rapidly Quenched Nickel-Based Non-Boron Filler Metals for Brazing Corrosion Resistant Steels. IOP Conference Series: Materials Science and Engineering. 2016. Vol. 130. 012044. DOI: 10.1088/1757-899x/130/1/012044
90. Ivannikov A. A., Kalin B. A., Sevryukov O. N., Penyaz M. A., Fedotov I. V., Misnikov V. E., Tarasova M. S. Study of the Ni – Si – Be System as a Base to Create Boron-Free Brazing Filler Metals. Science and Technology of Welding and Joining. 2017. Vol. 23, Iss. 3. pp. 187–197.
91. Otto J. L., Penyaz M., Möhring K., Gerdes L., Schaum T., Ivannikov A., Schmiedt-Kalenborn A., Kalin B., Walther F. Microstructure, Residual Stresses, and Strain-Rate-Dependent Deformation and Fracture Behavior of AISI 304L Joints Brazed with NiCrSiB Filler Metals. Metals. 2021. Vol. 11, Iss. 4. p. 593.
92. Qin Y., Jiang W. Microstructure and Mechanical Properties of 316L Stainless Steel Joints Brazed by BNi-7 Alloyed with Different Cu Content. Welding in the World. 2019. Vol. 63, Iss. 5. pp. 1469–1475.
93. Rabinkin A. Brazing with (NiCoCr) – B – Si Amorphous Brazing Filler Metals: Alloys, Processing, Joint Structure, Properties, Applications. Science and Technology of Welding and Joining. 2004. Vol. 9, Iss. 3. pp. 181–199.
94. Ivannikov A. A., Tukhbatov V. A., Suchkov A. N., Ustyuzhaninov A. L., Bogachev I. A. Rapidly Quenched Nickel Based Filler Metal for High Temperature Various Constructive Elements Brazing. Tsvetnye Metally. 2014. No. 12. pp. 27–31.
95. Lugscheider E., Partz K.-D. High Temperature Brazing of Stainless Steel with Nickel-Base Filler Metals BNi-2, BNi-5 and BNi-7. Welding Journal, WRS. 1983. pp. 160-s–164-s.
96. Hartmann T., Nützel D. Nickel-Chromium-Based Amor phous Brazing Foils for Continuous Furnace Brazing of
Stainless Steel. Proceedings of the 9th Conference on Brazing, High Temperature Brazing and Diffusion Bonding, LÖT 2010, Aachen (DVS Berichte 263). 2010. pp. 42–47.

Full content Overview of nickel-based filler metals for brazing of austenitic stainless steels
Back