Journals →  CIS Iron and Steel Review →  2021 →  #1 →  Back

Raw Materials and Mineral Processing
ArticleName Increasing the recovery ratio of iron ores in the course of preparation and processing
DOI 10.17580/cisisr.2021.01.01
ArticleAuthor V. B. Kuskov, V. V. Lvov, T. I. Yushina
ArticleAuthorData

St. Petersburg Mining University (St. Petersburg, Russia):

V. B. Kuskov, Cand. Eng., Associate Prof., Dept. of Mineral Processing, kuskov_vb@pers.spmi.ru
V. V. Lvov, Cand. Eng., Associate Prof., Dept. of Mineral Processing, lvov_vv@pers.spmi.ru

 

National University of Science and Technology “MISIS” (Moscow, Russia):
T. I. Yushina, Cand. Eng., Associate Prof., Head of Dept. of Mineral Processing and Technogenic Raw Materials, yuti62@mail.ru

Abstract

Iron is the base of modern economy. In Russia, iron reserves are plentiful, with magnetite quartzites forming the core of the country’s ore base. Oxidized ferruginous quartzites are a major source of replenishing mineral resources of Russia. The article studies the material composition and preparation characteristics of four representative samples of oxidized iron ore with different iron content. As the key preparation process, both strong and weak magnetic separation was used, with multi-stage grinding. The possibility to apply fine grinding using IsaMill method was explored. The result is a conceptual technology of comprehensive processing of mature tailings remaining after brown iron ore preparation which enables to obtain iron-containing concentrate suitable for smelting under Romelt process to yield pig iron and slag to be used in aggregates production. The work shows the possibility of obtaining light brown iron oxide pigments from disposal sites of Kamysh-Burun iron ore plant.

keywords Iron ore raw materials, magnetic separation, wet hight intensity magnetic separation, fine grinding, IsaMill grinding, Romelt process, ultrasonic treatment, iron oxide pigments
References

1 Rovenskikh M. V., Kobzeva A. G. Analysis of iron ore reserves in Russia and worldwide. Digital economy: Challenges and prospects. 2019. pp. 318–323.
2. Tsvetkova A., Katysheva E. Present problems of mineral and raw materials resources replenishment in Russia. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 2019. Vol. 19. Iss. 5.3. рр. 573–578. DOI: 10.5593/sgem2019/5.3/S21.072.
3. Aleksandrova T., Nikolaeva N., Lieberwirth H., Aleksandrov A. Selective disintegration and concentration: Theory and practice. E3S Web of Conferences, 56. 2018. DOI: 10.1051/e3sconf/20185603001.
4. Pelevin A. E. Methods of enhancing the efficiency of iron ore resources beneficiation. Chernaya metallurgiya. Byulleten nauchnotekhnicheskoy i ekonomicheskoy informatsii. 2019. No. 2. pp. 137–146. DOI: 10.32339/0135-5910-2019-2-137-146.
5. Karmazin V. V., Karmazin V. I. Magnetic, electric, and specialised methods of mineral processing: Textbook for higher education. In 2 volumes. Stereotype edition 3. Moscow. “Gornaya kniga” publishing house. 2017. Vol. 1: Magnetic and electric methods of mineral processing. 672 p.
6. Golenkov D. N., Chanturiya V. A., Shelepov E. V., Ignatova T. V. Increasing the reserves of iron ores by involving oxidized ferruginous quartzites in the processing scheme. Challenges and prospects of efficient mineral processing in the 21st century (Plaksin readings, 2019): Materials of international conference. Irkutsk, September 9–14, 2019. pp. 278–280.
7. Patra S. et al. Mineralogical and Chemical Characterization of Low Grade Iron Ore Fines from Barsua Area, Eastern India with Implications on Beneficiation and Waste Utilization. Journal of the Geological Society of India. 2019. Vol. 93. No. 4. pp. 443–454.
8. Maksimov I. I., Sentemova V. A. Aspects of processing of oxidized ferruginous quartzites with increased content of magnetite. Obogashchenie rud. 2012. No. 3. pp. 7–10.
9. Quast K., Skinner W. Influence of matrix type on WHIMS performance in the magnetic processing of iron ores. Minerals Engineering. 2020. Vol. 152. June 15. 106346. DOI: 10.1016/j.mineng.2020.106346.
10. Anderson G. S., Bandarian P. A. Improving IsaMill™ energy efficiency through shaft spacer design. Minerals Engineering. 2019. Vol. 132. pp. 211–219.
11. David D., Larson M., Le M. Optimising Western Australia Magnetite Circuit Design. In. Proceedings MetPlant. Perth, Australia. 2011. pp. 552–562.
12. Nazarenko M. Yu., Kondrasheva N. K., Saltykova S. N., Bazhin V. Yu. Physical properties of briquettes produced from shale fines and wood dust. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2016. Issue 327 (3). pp. 67–74.
13. Kondrasheva N. K., Saltykova S. N. Estimating the possibility of industrial use for oil shales and ash-shale wastes. Zapiski Gornogo instituta. 2016. Vol. 220. pp. 595–600. DOI: 10.18454/PMI.2016.4.595.
14. Nazarenko M. Yu., Bazhin V. Yu., Saltykova S. N., Sharikov F. Yu. Changing the chemical composition and properties of oil shales under heat treatment. Koks i khimiya. 2014. No. 10. pp. 46–49.
15. Trushko V. L., Utkov V. A. Developing import-substituting technologies of enhancing sintering machine productivity and sinter cake strength. Zapiski Gornogo instituta. 2016. Vol. 221. pp. 675–680. DOI: 10.18454/PMI.2016.5.675.
16. Aleksandrova T. N., Rasskazova A. V. Investigating the dependence of the quality of coal fuel briquettes on the manufacturing parameters. Zapiski Gornogo instituta. 2016. Vol. 220. pp. 573–577. DOI: 10.18454/PMI.2016.4.573.
17. Bizhanov A. M., Bragin V. V., Bardavelidze G. G., Pigarev S. P. Metallurgical characteristics of blast furnace extrusion briquettes (BREX) based on hematite concentrate. Metallurgist. 2020. Issue 9. pp. 17–25.
18. Nikulin A. N. 3D modeling of an extrusion shaper. European science. 2015. No. 2. pp. 8–12.
19. Shuvalov Yu. V., Tarasov Yu. D., Nikulin A. N. Validation of optimum technologies of obtaining fuel-energy feedstock based on solid combustible coal-containing wastes. Gornyi informatsionno-analiticheskiy byulleten. 2011. No. 8. pp. 243–247.
20. Argimbaev K. R., Kornev A. V., Kholodnyakov G. A. Validating the feasibility of involving iron-containing tailings in processing with subsequent agglomeration of the obtained concentrates. Zapiski Gornogo instituta. 2013. Vol. 206. pp. 120–124.
21. Petrov G. V., Boduen A. Ya., Popov A. A., Fokina S. B. Chemical concentration of steelmaking dusts. Chernye metally. 2016. No. 10. pp. 65–68.
22. Yushina T. I., Krylov I. O., Valavin V. S., Sysa P. A. Producibility of iron-bearing materials from industrial waste of Kamysh-Burun iron ore plant using Romelt process (part II). Gornyi Zhurnal. 2017. No. 7. pp. 68–72. DOI: 10.17580/gzh.2017.07.13.

Full content Increasing the recovery ratio of iron ores in the course of preparation and processing
Back