Journals →  Tsvetnye Metally →  2021 →  #8 →  Back

ArticleName Thermodynamics of Claus conversion of reduced sulfur dioxide
DOI 10.17580/tsm.2021.08.04
ArticleAuthor Platonov O. I., Tsemekhman L. Sh.

O. I. Platonov, Independent Consultant, Candidate of Technical Sciences, e-mail:
L. Sh. Tsemekhman, Member of the Editorial Board of the Tsvetnye Metally Journal, Doctor of Technical Sciences, Professor, e-mail:


To the sustainable economic development it is necessity to provide the total utilization every kind the waste including sulphurous off-gases of non-ferrous metallurgy. For the distant metallurgical works the most acceptable way for the utilization of the “strong” sulfurous gases of autogenous smelting that contain of over than 20% sulfur dioxide is elemental sulfur production because sulfur in elemental form is commercial product that the most tailored for transportation or long-time storage. To estimate of the potential resources of the sulfur recovery from the sulfurous off-gases autogeneous smelting, in the temperature range 250÷1350 oС, the thermodynamics of the reduction by methan of oxygen-beared sulfurous gases containing ~36 % by volume SO2 is analyzed at a total pressure of 1.0 and 1.3 bar. As it is show the thermodynamics calculation results excess of reducing agent strongly diminishing of the sulfur yield in last stage of the catalytic Claus processing of a real reducted sulfurous gas. According to the results of thermodynamic calculations at 3000 oC and under Claus ratio CR≡[H2S]/[SO2]=0,36÷1,98, it is find that equilibrium concentration of hydrogen sulfide in reducted gas is increase by the Claus ratio increasing. Comparing of the thermodynamic analysis results with the factual data of the reducted sulfurous gases conversion at the temperature 230÷260 oС in the catalytic reactor of the Elemental Sulfur Production Site at Copper Plant of Nornickel’ Polar Division is made. It is determine that in acid gases processing in Claus reactors the real values of the hydrogen sulfide conversion substantially exceed equilibrium conversion values, that may be because limits of the rate of the sulfur hydrolysis reaction inverse of the Claus reaction and make urgent to develop of the kinetic model of the Claus conversion. As it is found by the industrial experimental data analysis, the optimize temperature for the stage of the reducted sulfurous gas Claus conversion is temperature of the Claus reactor 230–250 oC.

keywords Autogenous smelting, sulphurous off-gas, reduction, reducted sulfurous gas, hydrogen sulfide, catalytic Claus conversion

1. Oruzheynikov A. I., Borbat V. F., Anshits A. G. Realizing the sulphurclosed technological processes of metallurgical production. Chemistry for Sustainable Development. 2004. Vol. 12, No. 6. pp. 701–708.
2. Eryomin O. G., Tarasov A. V., Eryomina G. A. Sulfur production from the exhaust gases from non-ferrous autogenous smelting processes. Nickel-Cobalt’97: Proc. Nickel-Cobalt Int. Symp., Sudbury, 17–20 Aug. 1997. Vol. 3. Montreal, 1997. pp. 285–292.
3. Khayrulin S. R., Kerzhentsev М. А., Yashnik S. А. et. al. Processes for cleaning gas emissions from non-ferrous metallurgy enterprises from sulfur dioxide. Promyshlennye tekhnologii i katalizatory. Khimiya v interesakh ustoychivogo razvitiya. 2015. Vol. 23. pp. 469–489.
4. Young S. W. The Thiogen process for removing sulfur fumes. Transactions of the American Institute of Chemical Engineers. 1915. Vol. 8. pp. 81–89.
5. Yushkevich N. F., Karzhavin V. А. Sulfur recovery from sulfur dioxide. Zhurnal khimicheskoy promyshlennosti. 1931. Vol. 8, No. 1. pp. 3–14.
6. Fleming E. P., Fitt T. C. Нigh purity sulfur from smelter gases. Industrial and Engineering Chemistry. 1950. Vol. 42, No. 11. pp. 2249–2253.
7. Hunter W. D., Michener A. W. New elemental sulphur recovery system establishes ability to handle roaster gases. Engineering & Mining Journal. 1973. No. 6. pp. 117–120.
8. Avdeeva А. V. Obtaining sulfur from gases. Moscow : Metallurgiya, 1977. 174 p.
9. Okura T. Production of elemental sulphur from non-ferrous smelter gas. Metallurgical and Materials Processing: Principles and Technologies (Yazawa International Symposium) Vol. 1. Materials Processing Fundamentals and New Technologies; ed. F. Kongoly, K. Itagaki, C. Yamauchi, H. Y. Sohn. Warrendale : TMS, 2003. pp. 519–526.
10. Ilyukhin I. V., Kozlov А. N., Sapegin Yu. V., Derevnin B. Т., Eroshevich S. Yu. Reconstruction of sulfur production at the Copper Plant of the Polar Division of MMC Norilsk Nickel. Tsvetnye Metally. 2008. No. 12. pp. 44–46.
11. Platonov O. I., Tsemkhman L. Sh. Methods of sulphur production from metallurgical gasses: general and partial questions of different technologies. Tsvetnye Metally. 2009. No. 8. pp. 47–52.
12. Ghahraloud H., Farsi M., Rahimpour M. R. Modeling and optimization of an industrial Claus process: Thermal and catalytic section. Journal of the Thaiwan Institute of Chemical Engineers. 2017. Vol. 76, No. 4. pp. 1–9.
13. Grunwald V. R. Gas sulfur technology. Moscow : Khimiya, 1992. 272 p.
14. Grancher P. Advances in Claus technology. Part 1: Studies in reaction mechanics. Hydrocarbon Processing. 1978. Vol. 57, No. 7. pp. 156–160.
15. Kohl A. L., Nielsen R. B. Gas Purification – 5th ed. Houston, Texas: Gulf Publishing Company, 1997. 1395 p.
16. Golubeva I. А. Gas sulfur: tutorial. Moscow : Izdatelskiy tsentr RGU nefti i gaza imeni I. M. Gubkina, 2015. 242 p.
17. Filatova О. Е. Criteria for evaluating the effectiveness of catalysts for production of gas sulfur. Actual problems of gas chemistry: Works of Moscow Seminar on Gas Chemistry 2002-2003. Мoscow : Izdatelskiy tsentr RGU nefti i gaza imeni I. M. Gubkina, 2004. pp. 169–182.
18. Gamson B. W., Elkins R. H. Sulfur from Hydrogen Sulfide. Chemical Engineering Progress. 1953. Vol. 49, No. 4. pp. 203–215.
19. Paskall H. G. Capability of the modified Claus process. Sulphur experts, Inc., Calgary, Alberta, Canada, 1979. Reprinted in: Kohl A. L., Nielsen R. B. Gas Purification. Houston, Texas, 1997.
20. Maadah A. G., Maddox R. N. Predict Claus products. Hydrocarbon Processing. 1978. Vol. 57, No. 8. pp. 143–146.
21. Bennnett G. A., Meisen A. Experimental determination of air-H2S equilibria under Claus furnace conditions. The Canadian Journal of Chemical Engineering. 1981. Vol. 59. pp. 532–539.
22. Gazimzyanov N. R., Platonov O. I. Efficiency of a Claus Furnace in the coke-oven gas desulphurization circuit of MMK. Coke and Chemistry. 2017. Vol. 60. No. 5. pp. 199–202.
23. Platonov Yu. I., Vasilyev Yu. V., Ryabko А. G., Tsemekhman L. Sh., Yatsenko S. P. To the selection of a scheme for recovering the exhaust gas of the Vanyukov furnace. Tsvetnye Metally. 2004. No. 2. pp. 68–72.
24. Iorish V. S., Belov G. V., Yungman V. S. IVTANTHERMO software package for Windows and its use in applied thermodynamic analysis. Preprint OIVTAN No. 8-415. Moscow : OIVTAN, 1998. 56 p.
25. Egorov V. N., Platonov O. I., Yatsenko S. P. On the temperature dependence of the Claus conversion of hydrogen sulfide on industrial alumina catalysts. Kataliz v promyshlennosti. 2004. No. 4. pp. 41–44.
26. Platonov O. I., Tsemekhman L. Sh. High-efficiency process for production sulfur from metallurgical sulfur dioxide gases. Russian Journal of Applied Chemistry. 2016. Vol. 89, No 1. pp. 16–25.
27. Eryomin O. G., Makarov D. F., Baryshev А. А., Orlov V. N., Timoshenko М. V. et. al. Production of sulfur by the methane method from gases of autogenous smelting. Tsvetnye Metally. 1992. No. 5. pp. 10–12.
28. Filatova O. E., Kislenko N. N., Krashennikov S. V., Morgun L. V., Makhoshvili Yu. A. Method of estimation of serviceability of catalyst in Clause sulfur production reactors and sulfren final refraction reactors. Patent RF, No. 2264978. Applied: 08.04.2004. Published: 27.11.2005. Bulletin No. 33.
29. Platonov O. I., Tzhemekhman L. Sh. Gas composition matters. Sulphur. 2009. No. 322. pp. 47–49.
30. Egorov V. N., Krinitsyn E. N., Melnikov I. I., Platonov O. I., Tarasov N. A. et al. Particularities in processes ammonia decomposition and sulfur production. Coke and Chemistry. 2001. No. 12. pp. 14–19.
31. Sepehr Sadighi, Seyed Reza Seif Mohaddecy, Mehdi Rashidzadeh. Modeling, evaluating and scaling up a commercial multilayer Claus converter based on branch scale experiments. Bulletin of Chemical Reaction Engineering and Catalysis. 2020. Vol. 15, No. 2. pp. 465–475.
32. Shchurin R. М., Onopko Т. V., Kalinina N. В., Pliner V. М. Gas sulfur production by the Claus method. Survey information. Series Industrial and sanitary gas cleaning. Moscow : TsINTIkhimneftemash, 1986. 38 p.
33. Platonov O. I. Thermodynamics of Hydrogen-Sulfide Conversion in a Claus reactor in Coke-oven Gas Desulfurization Circuit of MMK. Coke and Chemistry. 2018. Vol. 61, No. 9. pp. 344–348.
34. Vlasov V. А., Platonov O. I., Terentyev А. О., Tsemekhman L. Sh. Potential copper plant Vanyukov furnace gas desulphuization capacity. Tsvetnye Metally. 2021. No. 1. pp. 25–31. DOI: 10.17580/tsm.2021.01.02.

Language of full-text russian
Full content Buy