ArticleName |
Bond coat composition formed by spark plasma sintering for gradient material with thermal barrier properties |
ArticleAuthorData |
Perm National Research Polytechnic University, Perm, Russia:
S. A. Oglezneva, Professor at the Department of the Mechanics of Composite Materials and Structures, Doctor of Technical Sciences, e-mail: ogleznevasa@pstu.ru M. N. Kachenyuk, Associate Professor at the Department of the Mechanics of Composite Materials and Structures, Candidate of Technical Sciences, e-mail: maxxkach@yandex.ru
A. A. Smetkin, Associate Professor at the Department of the Mechanics of Composite Materials and Structures, Candidate of Technical Sciences, e-mail: smetkinaa@pstu.ru V. B. Kulmetieva, Associate Professor at the Department of the Mechanics of Composite Materials and Structures, Candidate of Technical Sciences |
References |
1. Besisa D. H. A., Ewais E. M. M. Advances in functionally graded ceramics – processing, sintering properties and applications. Advances in Functionally Graded Materials and Structures, Farzad Ebrahimi, IntechOpen. March 31st 2016. DOI: 10.5772/62612. Available at: https://www.intechopen.com/books/advances-in-functionally-graded-materials-and-structures/advancesin-functionally-graded-ceramics-processing-sintering-properties-and-applications (Accessed: 13.09.2021). 2. Naebe M., Shirvanimoghaddam K. Functionally graded materials: A review of fabrication and properties. Applied Materials Today. 2016. Vol. 5. pp. 223–245. DOI: 10.1016/j.apmt.2016.10.001. 3. Fukui Y., Takashima K., Ponton C. B. Measurement of Young’s modulus and internal friction of an in situ Al – Al3Ni functionally gradient material. Journal of Materials Science. 1994. Vol. 29. pp. 2281–2288. DOI: 10.1007/BF00363415. 4. Abbas M. R., Uday M. B., Noor A. M., Ahmad N. et al. Microstructural evaluation of a slurry based Ni/YSZ thermal barrier coating for automotive turbocharger turbine application. Materials and Design. 2016. Vol. 109. pp. 47–56. 5. Dhineshkumar S. R., Duraiselvam M., Natarajan S., Panwar S. S. et al. Enhancement of strain tolerance of functionally graded LaTi2Al9O19 thermal barrier coating through ultra-short pulse based laser texturing. Surface and Coatings Technology. 2016. Vol. 304. pp. 263–271. DOI: 10.1016/j.surfcoat.2016.07.018. 6. Cherradi N., Kawasaki A., Gasik M. Worldwide trends in functional gradient materials research and development. Composites Engineering. 1994. Vol. 4, No. 8. pp. 883–894. DOI: 10.1016/S0961-9526(09)80012-9. 7. Sam M., Jojith R., Radhika N. Progression in manufacturing of functionally graded materials and impact of thermal treatment — A critical review. Journal of Manufacturing Processes. 2021. Vol. 68. Part A. pp. 1339–1377. DOI: 10.1016/j.jmapro.2021.06.062. 8. Allahyarzadeh M. H., Aliofkhazraei M., Sabour Rouhaghdam A. R., Torabinejad V. Gradient electrodeposition of Ni – Cu – W(alumina) nanocomposite coating. Materials and Design. 2016. Vol. 107. pp. 74–81. DOI: 10.1016/j.matdes.2016.06.019. 9. Naga S. M., Awaad M., El-Maghraby H. F., Hassan A. M. et al. Effect of La2Zr2O7coat on the hot corrosion of multi-layer thermal barrier coatings. Materials and Design. 2016. Vol. 102. pp. 1–7. DOI: 10.1016/j.matdes.2016.03.133. 10. Spark Plasma Sintering of Materials: Advances in Processing and Applications. 1st ed. Ed. P. Cavaliere. Cham, Switzerland : Springer, 2019. 761 p. DOI: 10.1007/978-3-030-05327-7. 11. Kashin D. S., Stekhov P. A. Modern thermal barrier coatings produced by electron-beam deposition: A review. Trudy VIAM. 2018. No. 2(62). pp. 84–90. DOI: 10.18577/2307-6046-2018-0-2-10-10. 12. Bobzin K., Zhao L., Wietheger W., Königstein T. Key influencing factors for the thermal shock resistance of La2Zr2O7-based multilayer TBCs. Surface and Coatings Technology. 2020. Vol. 396. p. 125951. DOI: 10.1016/j.surfcoat.2020.125951. 13. Yang P., An Y., Zhao D.,Yuhong Li Y. et al. Structure evolution, thermal properties and sintering resistance of promising thermal barrier coating material La2(Zr0.75Ce0.25)2O7. Ceramics International. 2020. Vol. 46. pp. 20652–20663. DOI: 10.1016/j.ceramint.2020.04.111. 14. Wu J., Wei X., Padture N. P., Klemens P. G. et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. Journal of the American Ceramic Society. 2002. Vol. 85, No. 12. pp. 3031–3035. DOI: 10.1111/j.1151-2916.2002.tb00574.x. 15. Guo L., Guo H., Peng H., Gong S. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0,9Yb0,1)2Zr2O7/YSZ thermal barrier coatings. Journal of the European Ceramic Society. 2014. Vol. 34. pp. 1255–1263. DOI: 10.1016/j.jeurceramsoc.2013.11.035. 16. Gadow R., Lischka M. Lanthanum hexaaluminate — novel thermal barrier coatings for gas turbine applications — materials and process development. Surface and Coatings Technology. 2002. Vol. 151–152. pp. 392–399. DOI: 10.1016/S0257-8972(01)01642-5. 17. Haynes A., Unocic K. A., Lance M. J., Pint B. A. Impact of superalloy composition, bond coat roughness and water vapor on TBC lifetime with HVOF NiCoCrAlYHfSi bond coatings. Surface and Coatings Technology. 2013. Vol. 237. pp. 65–70. DOI: 10.1016/j.surfcoat.2013.09.062. 18. Zhou X., Xu Z., Mu R., He L. et al. Thermal barrier coatings with a double-layer bond coat on Ni3Al based single-crystal superalloy. Journal of Alloys and Compounds. 2014. Vol. 591. pp. 41–51. DOI: 10.1016/j.jallcom.2013.12.040. 19. Yang H. Z., Zou J. P., Shi Q., Dai M. J. et al. Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation. Corrosion Science. 2019. Vol. 153. pp. 162–169. DOI: 10.1016/j.corsci.2019.03.022. 20. Song J., Ma K., Zhang L., Schoenung J. M. Simultaneous synthesis by spark plasma sintering of a thermal barrier coating system with a NiCrAlY bond coat. Surface and Coatings Technology. 2010. Vol. 205, No. 5. pp. 1241–1244. DOI: 10.1016/j.surfcoat.2010.08.064. 21. Monceau D., Oquab D., Estourns C., Boidot M. et al. Thermal barrier systems and multi-layered coatings fabricated by spark plasma sintering for the protection of Ni-base superalloys. Materials Science Forum. 2010. Vol. 654-656. pp. 1826–1831. DOI: 10.4028/www.scientific.net/MSF.654-656.1826. 22. Kulmetieva V. B., Porozova S. E., Gnedina E. S. Synthesis of nanocrystalline zirconium dioxide stabilized with yttrium oxide for low-temperature sintering. Russian Journal of Non-Ferrous Metals. 2013. Vol. 54, No. 3. pp. 239–245. DOI: 10.3103/S1067821213030097. 23. GOST 9450–76. Measuring microhardness by diamond instruments indentation. Introduced: 01.01.1997. 24. Oglezneva S. A., Smetkin A. A., Kachenyuk M. N. Production of the gradient material Inconel 625 with an external ceramic layer for thermal barrier coatings by spark plasma sintering. Composite materials constructions. 2020. Iss. 4(160). pp. 28–31. 25. Kaschnitz E., Kaschnitz L., Heugenhauser S. Electrical resistivity measured by millisecond pulse heating in comparison with thermal conductivity of the superalloy inconel 625 at elevated temperature. International Journal of Thermophysics. 2019. Vol. 40, Iss. 3. pp. 27–40. DOI: 10.1007/s10765-019-2490-8. 26. Schlichting K. W., Padture N. P., Klemens P. G. Thermal conductivity of dense and porous yttria-stabilized zirconia. Journal of Materials Science. 2001. Vol. 36. pp. 3003–3010. DOI: 10.1023/A:1017970924312. |