Journals →  Tsvetnye Metally →  2021 →  #11 →  Back

MATERIALS SCIENCE
ArticleName The Structure of Al – Mg – Si Casting alloys Modified by Lithium and Scandium
DOI 10.17580/tsm.2021.11.09
ArticleAuthor Slyudova A. A., Trudonoshin A. I., Prach E. L., Lisovskiy V. A.
ArticleAuthorData

 Vyatka State University, Kirov, Russia:

A. A. Slyudova, Senior Lecturer at the Department of Materials Science and Design Fundamentals, e-mail: aa_slyudova@vyatsu.ru
A. I. Trudonoshin, Senior Researcher at the Department of Materials Science and Design Fundamentals, PhD, e-mail: trudonoshyn@yandex.ru

V. A. Lisovskiy, Dean of the Faculty of Technology, Engineering and Design, Candidate of Technical Sciences, e-mail: lisvitalex@gmail.com

 

Technical University of Darmstadt, Darmstadt, Germany:
E. L. Prach, Postgraduate Student at the Department of Metallurgy, PhD, e-mail: prach@phm.tu-darmstadt.de

Abstract

The structure of hypoeutectic Al – Mg – Si alloys cast in permanent mold, as well as using a high-pressure die-casting unit (HPDC), was investigated. Changes in the structure after additional alloying of the base alloy (Al – 5.5Mg – 2.5Si – 0.6Mn) with lithium and scandium were studied. For a more detailed description of the structure of the alloys, phase diagrams and the volume fractions of the phases in the Thermo-Calc software were calculated. Thermo-Calc results are in good agreement with metallographic studies. The microstructure of the alloys was investigated using a scanning electron microscope (SEM) on polished and deeply etched microsections. The article also shows the strong influence of the crystallization rate on the eutectic morphology and the secondary dendrite arm spacing (SDAS). Alloying the base alloy with lithium leads to a change in the eutectic morphology from lamellar to fine fibrous. Alloying with scandium not only changes the eutectic morphology from lamellar to the fine fibrous but also reduces the SDAS. Scandium addition leads to the formation of primary Al3Sc crystals, which act as a substrate for the heterogeneous nucleation of α-Al dendrites and Al – Mg2Si eutectic. To determine the effect of alloying elements on the properties of alloys, hardness, tensile strength, and elongation were measured. Local mechanical properties were measured as microhardness of α-Al dendrites, Al – Mg2Si eutectic, and Al3Sc phase. Alloys with lithium and scandium show increased properties in the cast state compared to the base alloy.

keywords Al – Mg – Si alloys, alloying, phase transformations, scandium, lithium, microstructure, modification
References

1. International aluminum institute, global aluminium recycling: a cornerstone of sustainable development. Available at: http://www.world-aluminium.org/media/filer__public/2013/01/15/fl0000181.pdf (Accessed: 01.03.2020).
2. European aluminium association, market overview. Available at: https://www.european-aluminium.eu/activity-report-2017/market-overview/ (Accessed: 01. 03. 2020).
3. Kelkar A., Roth R., Clark J. Automobile bodies: can aluminum be an economical alternative to steel? Journal of the Minerals, Metals & Materials Society. 2001. Vol. 53, No. 8. pp. 28–32. DOI: 10.1002/cite.201650064.
4. Shamas U. D., Hasan B. A., Tariq N. H., Mehmood M. Effect of Li addition on microstructure and mechanical properties of Al – Mg – Si alloy. International Journal of Materials Research. 2014. Vol. 105, No. 8. pp. 770–777. DOI: 10.3139/146.111089.
5. Shamas U. D., Kamran J., Tariq N. H., Hasan B. A., Petrov R. H. et al. The synergistic effect of Li addition on microstructure, texture and mechanical properties of extruded Al – Mg – Si alloys. Materials Chemistry and Physics. 2016. Vol. 174. pp. 11–22. DOI: 10.1016/j.matchemphys.2016.02.029.
6. Kablov E. N., Antipov V. V., Klochkova Yu. Yu. Aluminium-lithium alloys of new generation and aluminium fiberglass laminates on their basis. Tsvetnye Metally. 2016. No. 8. pp. 86–91. DOI: 10.17580/tsm.2016.08.13.
7. Yang X., Xiong В., Li X., Yan L., Li Z. et al. Microstructural evolution and phase transformation of Al – Mg – Si alloy containing 3% Li during homogenization. Physics and Engineering of Metallic Materials. 2019. pp. 411–417. DOI: 10.1007/978-981-13-5944-6_3.
8. Antipov V. V., Lavro N. A., Sukhoivanenko V. V., Senatorova O. G. Experience of application of Al – Li 1441 alloy and laminates on its basis in hydroplanes. Tsvetnye Metally. 2013. No. 9. pp. 46–50.
9. Trudonoshin A. I. Studying the structure of Al – Mg – Si casting alloys doped by lithium. Fizika metallov i metallovedenie. 2020. Vol. 121. pp. 1–8. DOI: 10.31857/S0015323020070116.
10. Trudonoshyn О., Rehm S., Randelzhofer Р., Korner С. Improvement of the high-pressure die casting alloy Al – 5,7Mg – 2,6Si – 0,7Mn with Zn addition. Materials Characterization. 2019. Vol. 158. p. 109959. DOI: 10.1016/j.matchar.2019.109959.
11. Saito T., Mortsell E. A., Wenner S., Marioara C. D., Andersen S. J. et al. Atomic structures of precipitates in Al – Mg – Si alloys with small additions of other elements. Advanced Engineering Materials. 2018. Vol. 20. pp. 1–18. DOI: 10.1002/adem.201800125.
12. Prach E. L., Trudonoshin A. I., Boyko V. V., Mikhalenkov K. V. Developing new casting alloys of the Al – Mg – Si – Mn system with additions of 1.0 wt % Li and 0.1 wt % Ti + 0.1 wt% Zr. Metal and Casting of Ukraine. 2014. No. 8. pp. 17–23.
13. Shamas U. D., Kamran J., Hasan В. A., Tariq N. H. Mehmood M., Shamas M. Z. Effect of thermo mechanical treatments and aging parameters on mechanical properties of Al – Mg – Si alloy containing 3 wt.% Li. Materials and Design Journal. 2014. Vol. 64. pp. 366–373. DOI: 10.1016/j.matdes.2014.07.062.
14. Yan L., Zhangn Y., Li X., Li Z., Wang E, Liu H., Xiong B. Effect of Zn addition on micro structure and mechanical properties of an Al – Mg – Si alloy. Progress in Natural Science: Materials International. 2014. No. 3. pp. 1–4. DOI: 10.1016/j.pnsc.2014.03.003.
15. Mortsell E. A., Marioara C. D., Andersen S. J., Ringdalen I. G., Friis J. et al. The effects and behaviour of Li and Cu alloying agents in lean Al – Mg – Si alloys. Journal of Alloys and Compounds. 2017. Vol. 699. pp. 235–242. DOI: 10.1016/j.jallcom.2016.12.273.
16. Koshino Y., Kozuka M., Hirosawa S., Aruga Y. Comparative and complementary characterization of precipitate microstructures in Al – Mg – Si(-Li) alloys by transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography. Journal of Alloys and Compounds. 2015. Vol. 622. pp. 765–770. DOI: 10.1016/j.jallcom.2014.10.199.
17. Chen R., Huang Z., Chen C.Q., Shen J. Y., Zhang Y. G. Thermodynamic calculated and ТЕМ observed microstructure of Al – Li – Mg – Si alloys. Materials Science and Engineering : A. 2000. Vol. 280. pp. 146–150. DOI: 10.1016/S0921-5093(99)00681-4.
18. Razaghian A., Bahrami A., Emamy M. The influence of Li on the tensile properties of extruded in situ Al – 15%Mg2Si composite. Materials Science and Engineering: A. 2012. Vol. 532. pp. 346–353. DOI: 10.1016/j.msea.2011.10.101.
19. Hadian R., Emamy M., Campbell J. Modification of cast Al-Mg2Si metal matrix composite by Li. Metallurgical and Materials Transactions : В. 2009. Vol. 40. pp. 822–832. DOI: 10.1007/sl 1663-009-9251-1.
20. Trudonoshyn O., Prach O., Boyko V., Puchnin M., Mykhalenkov K. Design of a new casting alloys containing Li or Ti+Zr and optimization of its heat treatment. Metal 2014 – 23rd International Conference on Metallurgy and Materials. 2014. pp. 1399–1404.
21. Toropova L. S., Eskinm D. G., Kharakterovam M. L., Dobatkina T. V. Advanced aluminum alloys containing scandium: structure and properties. 1 edition. Routledge. 2017. p. 188.
22. Yashin V. V., Kabanov A. S., Aryshensky E. V., Latushkin I. A. How microalloying of the AlMg5 alloy with transition metals (Sc, Zr, Nb) impacts the structure of a cast billet. Tsvetnye Metally. 2019. No. 2. pp. 56–61. DOI: 10.17580/tsm.2019.02.09.
23. Ri E. H., Ri Hosen, Deev V. B., Kolisova M. V. Effect of scandium on the structure, segregation and properties of the aluminium cast alloy АМ4.5Cd. Tsvetnye Metally. 2019. No. 7. P. 78–85. DOI: 10.17580/tsm.2019.07.10.
24. Royset J. Scandium in aluminium alloys overview: physical metallurgy, properties and applications. Metal Science and Technology. 2007. No. 25. pp. 11–21.
25. Begoc S., Montredon F., Pommatau G., Leger G., Gas M. Additive manufacturing of Scalmalloy® satellite parts. 8th European Conference For Aeronautics And Space Sciences. (EUCASS). pp. 1–15. DOI: 10.13009/EUCASS2019-677.
26. Norman A. F., Prangnell P. B., McEwen R. S. The solidification behaviour of dilute aluminium-scandium alloys. Acta Materialia. 1998. Vol. 46. pp. 5715–5732. DOI: 10.1016/S1359-6454(98)00257-2.
27. Xu C., Xiao W., Hanada S., Yamagata H., Ma C. The effect of scandium addition on microstructure and mechanical properties of Al – Si – Mg alloy : A multi-refinement modifier. Materials Characterization. 2015. Vol. 110. pp. 160–169. DOI: 10.1016/j.matchar.2015.10.030.
28. Trudonoshyn O., Prach O. Multistep nucleation and multi-modification effect of Sc in hypoeutectic Al – Mg –Si alloys. Heliyon. 2019. Vol. 5. pp. 1–12. DOI: 10.1016/j.heliyon.2019.e01202.
29. Tolochko N. K., Andrushevich A. A. Methods for obtaining fine-grained structure in castings during solidification. Lite i Metallurgiya. 2012. No. 2. pp. 27–31.
30. Trudonoshin A. I., Slyudova A. A., Lisovskiy V. A., Prach E. L. Influence of scandium and chromium on the mechanical properties of Al – Mg – Si – Mn alloys: Abstracts of reports presented at the 25th Ural School of Experts in Metals Heat Treatment. Yekaterinburg : Uralskiy universitet. pp. 14–16.
31. Prach О., Trudonoshyn О., Randelzhofer Р., Körner С., Durst К. Effect of Zr, Cr and Sc on the Al – Mg – Si – Mn high-pressure die casting alloys. Materials Science and Engineering : A. 2019. Vol. 759. pp. 603–612. DOI: 10.1016/j.msea.2019.05.038.
32. Prach O., Hornik J., Mykhalenkov K. Effect of the addition of Li on the structure and mechanical properties of hypoeutectic Al – Mg2Si alloys. Acta Polytechnica. 2015. Vol. 55. pp. 253–259. DOI: 10.14311/AP.2015.55.0253.
33. Ma R., Peng C., Cai Z., Wang R., Zhou Z. et al. Effect of bimodal microstructure on the tensile properties of selective laser melt Al – Mg – Sc – Zr alloy. Journal of Alloys and Compounds. 2020. Vol. 815. p. 152422. DOI: 10.1016/j.jallcom.2019.152422.
34. Kuo C. N., Chua С. K., Peng P. C., Chen Y. W., Sing S. L. et al. Microstructure evolution and mechanical property response via 3D printing parameter development of Al – Sc alloy. Virtual and Physical Prototyping. 2020. No. 15. pp. 120–129. DOI: 10.1080/17452759.2019.1698967.
35. Ma R., Peng C., Cai Z., Wang R., Zhou Z., Li X., Cao X. Manipulating the microstructure and tensile properties of selective laser melted Al – Mg – Sc – Zr alloy through heat treatment. Journal of Alloys and Compounds. 2020. Vol. 831. p. 154773. DOI: 10.1016/j.jallcom.2020.154773.
36. Rheinfelden alloys GmbH and company KG. Available at: https://rheinfelden-alloys.eu/en/alloys/magsimal/
37. Trudonoshin A. I., Mikhalenkov K. V. Morphology and properties of primary Mg2Si crystals in Al – Mg – Si alloys. Casting Processes. 2014. No. 5. pp. 38–47.
38. Hadian R., Emamy М., Varahram N., Nemati N. The effect of Li on the tensile properties of cast Al – Mg2Si metal matrix composite. Materials Science and Engineering: A. 2008. Vol. 490. pp. 250–257. DOI: 10.1016/j.msea.2008.01.039.

Language of full-text russian
Full content Buy
Back