Journals →  Chernye Metally →  2021 →  #11 →  Back

Steelmaking and Metal science
ArticleName Phase equilibriums in the carbide area of the «iron-carbon» diagram. Part 2. Complete diagram of the iron - ε-Fe2C carbide system
DOI 10.17580/chm.2021.11.03
ArticleAuthor S. V. Davydov
ArticleAuthorData

Bryansk State Technical University (Bryansk, Russia):

S. V. Davydov, Dr. Eng., Prof., Dept. of Tribotechnical Materials Science and Materials Technology, e-mail: fulleren_grafen@mail.ru

Abstract

Within the limits of the existing diagram of “iron-carbon” alloys it is impossible to explain some of the effects, for example, the separation of “sings” from blast furnace cast irons and the impossibility of existing metallurgical technologies to obtain iron-carbon alloys containing more than 5.0 %C. In addition, the “white” spot on the diagram is the carbide area lying on the right cement line. Significant progress made now in the study of iron carbides and the behavior of ironcarbon alloys at extreme parameters makes it possible to update and refine the “iron-carbon” diagram, and above all in the area of phase transformation of iron carbides, to a concentration of 9.7 %C, corresponding to the chemical composition of ε-carbide Fe2C. In the present work the complete diagram of the system “iron-carbide ε-Fe2C” in the concentration range of 0...9,7 %C is offered. The following phase transformations are introduced in the diagram: Cementite θ-Fe3C crystallization follows the reaction of the peritectic type of nonvariant three-phase synthetic equilibrium; Hegg carbide χ-Fe5C2 crystallization is described in the framework of transformation following the reaction of nonvariant three-phase peritectic equilibrium; low-temperature peritectoid-type carbide transformation in which the solid solutions of ferrite and cement form a solid solution of a wide area of homogeneity based on bertollide ε-karbide Fe2C. It is shown that the carbide phases are a single isomorphic quasi-carbide solid solution, and structurally, according to the proposed diagram variant, the carbide phase is crystallized as a mixture of carbide phases as a quasi-eutectic.

keywords Iron carbon diagram, cement θ-Fe3C, Hegg carbide-Fe5C2, Extreme-Adcoccus carbide æ-Fe7C3 and ε-Fe2C carbide, iron carbides, ledeburite, austenite
References

1. Davydov S. V. Carbon vapor pressure and structure of cast iron melts. Metallurgiya mashinostroeniya. 2002. No. 3 (6). pp. 17–20.
2. Zhukov А. А., Shterenberg L. Е., Shalashov V. А., Tomas V. К., Berezovskaya N. А. Pseudohexagonal iron carbide Fe7C3 and Fe3C-Fe7C3 eutectic in the Fe-C system. Izvestiya AN SSSR. Metally. 1973. No. 1. pp. 181–184.
3. Zhukov А. А. Geometric thermodynamics of iron alloys. 2nd edition, revised. Moscow: Metallurgiya, 1979. 232 p.
4. Litasov К. D., Popov Z. I., Gavryushkin P. N. et. al. First-principles calculations of equations of state and relative stability of iron carbides at pressures of the Earth’s core. Geologiya i geofizika. 2015. Vol. 56. No. 1-2. pp. 214–223.
5. Bataleva Yu. V., Palyanov Yu. N., Borzdov Yu. М., Bayukov О. А., Sobolev N. V. Conditions for formation of graphite and diamond from iron carbide at P, T-parameters of the lithospheric mantle. Geologiya i geofizika. 2016. Vol. 57. No. 1. pp. 225–240.
6. Zhukov А. А., Snezhnoy R. L. On the shape of the liquidus curve in the region of cementite melting in the iron-diamond state diagram. Izvestiya AN SSSR. Metally. 1976. No. 3. pp. 192–199.
7. Zhukov А. А. On the phase diagram of alloys of the Fe-C system. Metallovedenie i termicheskaya obrabotka metallov. 1988. No. 4. pp. 2–9.
8. Zhukov А. А., Snezhnoy R. L. Shterenberg L. Е., Kalner V. D., Shalashov V. А., Tomas V. К., Berezovskaya N. А. Iron-diamond system state diagram. Doklady AN SSSR. 1973. Vol. 211, No. 1. pp. 145–147.
9. Silman G. I. Iron-carbon system. Bryansk: Izdatelstvo BGITA, 2007. 84 p.
10. Silman G. I. Refinement of the Fe-C diagram based on the results of thermodynamic analysis and generalization of data on the Fe-C and Fe-C-Cr systems. Metallovedenie i termicheskaya obrabotka metallov. 1997. No. 11. pp. 2–7.
11. Davydov S. V. Carbide transformation of the peritectoid type in Fe-C alloys. Metallurgiya mashinostroeniya. 2020. No. 4. pp. 17–26.
12. Lord O. T., Walter M. J., Dasgupta R., Walker D., Clark S. M. Melting in the Fe–C System to 70 GPa. Earth Planet. Sci. Lett. 2009. Vol. 284. pp. 157–167.
13. Nakajima Y., Takahashi E., Suzuki T., Funakoshi K. «Carbon in the Core» Revisited. Phys. Earth Planet. Interiors. 2009. Vol. 174. pp. 202–211.
14. Gulyaev А. P. About the iron-carbon diagram. Metallovedenie i termicheskaya obrabotka metallov. 1990. No. 7. pp. 21.
15. Zalkin V. М., Kraposhin V. S. The structure of iron-carbon melts. On the stability of cementite in melts. Metallovedenie i termicheskaya obrabotka metallov. 2010. No. 1. pp. 15–18.
16. Barinov V. А., Tsurin V. А., Kazantsev V. А., Surikov V. Т. Carbonization of α-Fe during mechanosynthesis. Fizika metallov i metallovedenie. 2014. Vol. 115. No. 1. pp. 57–73.
17. Barinov V. А., Kazantsev V. А., Surikov V. Т. Temperature studies of mechanically synthesized cementite. Fizika metallov i metallovedenie. 2014. Vol. 115, No. 6. pp. 614–623.
18. Barinov V. А., Protasov A. V., Surikov V. Т. Investigation of mechanically synthesized Hagg χ-carbide. Fizika metallov i metallovedenie. 2015. Vol. 116. No. 8. pp. 835–845.
19. Barinov V. А., Tsurin V. А., Surikov V. Т. Study of mechanosynthesized Fe7C3. Fizika metallov i metallovedenie. 2010. Vol. 110. No. 5. pp. 497–507.
20. Chen B., Lai X., Li J., Liu J., Zhao J., Bi W., Alp E. E., Hu M. Y., Xiao Y. Experimental Constraints on the Sound Velocities of Cementite Fe3C to Core Pressures. Earth and Planetary Science Letters. 2018. Vol. 494. No. 15. pp. 164–171.
21. Suguru T., Ohtani E., Ikuta D., Kamada S., Sakamaki T., Hirao N., Ohishi Y. Thermal Equation of State of Fe3C to 327 GPa and Carbon in the Core. Minerals. 2019. Vol. 9. No. 12. pp. 744–754.
22. Izumi M., Miozzi F., Hirose K., Morard G., Sinmyo R. Melting experiments on the Fe–C binary system up to 255 GPa: Constraints on the carbon content in the Earth’s core. Earth and Planetary Science Letters. 2019. Vol. 515. pp. 135–144.
23. Morard G., Nakajima Y., Andrault D., Antonangeli D., Auzende A. L., Boulard E., Cervera S., Clark A. N., Lord O. T., Siebert J., Svitlyk V., Garbarino G., Mezouar M. Structure and density of Fe-C liquid alloys under high pressure. Journal of Geophysical Research: Solid Earth. 2017. Vol. 10. pp. 7813–7823.
24. Yuki Sh., Kono Y., Fei Y. Microscopic structural change in a liquid Fe-C alloy of ~5 GPa. American Geophysical Union (AGU), Geophysical Research Letters. 2015. Vol. 7. pp. 5236–5242.
25. Zhimulev E. I., Sonin V. M., Mironov A. M., Chepurov A. I. Effect of Sulfur Concentration on Diamond Crystallization in the Fe–C–S System at 5.3–5.5 GPa and 1300–1370 °C. Geochemistry International. 2016. Vol. 54. No. 5. pp. 415–422.
26. Jin Liu, Jung-Fu Lin, Prakapenka V. B., Prescher C., Yoshino T. Phase relations of Fe3C and Fe7C3 up to 185 GPa and 5200 K: Implication for the stability of iron carbide in the Earth’s core. American Geophysical Union (AGU), Geophysical Research Letters. 2016. No. 12. pp. 12415–12422.
27. Lord O. T., Walter M. J., Dasgupta R., Walker D., Clark S. M. Melting in the Fe–C system to 70 GPa. Earth and Planetary Science Letters. 2009. Vol. 284 (1-2). pp. 157–167.

Language of full-text russian
Full content Buy
Back