Journals →  Chernye Metally →  2021 →  #11 →  Back

Rolling and other Metal forming processes
ArticleName Justification of strip tension in the cold rolling mill digital twin
DOI 10.17580/chm.2021.11.10
ArticleAuthor M. I. Rumyantsev, A. N. Zavalishchin, A. N. Kolybanov, O. N. Esipova
ArticleAuthorData

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

M. I. Rumyantsev, Dr. Eng., Professor, Dept. of Materials Processing Technologies, e-mail: mikhail.rumyantsev54@bk.ru
A. N. Zavalishchin, Dr. Eng., Professor, Dept. of Foundry and Materials Science
A. N. Kolybanov, Post-Graduate Student, Dept. of Materials Processing Technologies
O. N. Esipova, Master Student, Dept. of Materials Processing Technologies

Abstract

One of the local tasks of the “Cold Rolling Mill - Strip” system digital twin is the tension value choice in order to obtain a given quality strip with the required productivity. Taking into account non-distinct effect of tension on rolling process, the inter-stand tensions choice is a problem of multicriteria optimization with complicated on-line operation of digital twin. The relationships between tension level and technological parameters were obtained; they reflect well-known positive operating experience of different cold-rolling mills. Previously chosen tensions are assessed (taking into account restrictions of rolls retarding, strip bursting and non-flatness, and recommended based on the “tension level” characteristic. As a result of research on existing mills, dependencies were obtained to determine the rational values of the level of inter-stand tensions. An algorithm has been developed for assessing the cold rolling stability with allowance for tension. It allows to develop power-efficient technologies for production of cold-rolled strip with improved surface quality.

keywords Cold rolling mill, conventional four-high strips mill, CVCPLUS four-high strips mill, strip tension, tension level, the rolling process stability, energy efficiency, strip surface quality
References

1. Shatalov R. L., Maksimov E. A., Babkin A. G. Adjustment of rolling mills to produce flatter steel strip. Steel in Translation. 2011. Vol. 41. No. 10. pp. 845-848.
2. Rumyantsev М. I. Generalized algorithm aided design modes of rolling and its application for developing technology of PLTCM 2000. CIS Iron and Steel Review. 2014. Vol. 9. pp. 40-44.
3. Shalaevskiy D. L., Kozhevnikov A. V. Algorithm and design methodology for energy-efficient sheet products production technology. In the collection: IOP Conference Series: Materials Science and Engineering. 4. Series “4th International Scientific and Technical Conference on Scientific and Technical Progress in Ferrous Metallurgy, SATPIFM 2019”. 2020. p. 012015.
4. Nastich V. P., Bozhkov A. I. Quality management of cold rolled strips. Moscow: Intermet Inzhiniring, 2006. 216 p.
5. Tarnopolskaya T., Yuen W. Y. D. Analysis of the Effect of Tension at the Entry of Cold Rolling Mill on the Stability of Strip Tracking. ISIJ International. 2005. Vol. 45. No. 9. pp. 1316-1321.
6. Shatalov R. L. Managing strip transversal stability in metal rolling. Chernye Metally. 2012. No. 12. pp. 22-25.
7. Maksimov E. А., Shatalov R. L., Lukash А. S. Stability of flat strip taking into account elastic-plastic bending by metal thickness in thin sheet rolling. Chernye Metally. 2011. No. 10. pp. 9-13.
8. Maksimenko О. P., Loboyko D. I., Izmaylova M. K. Longitudinal stability of strip in rolls with analysis of contact conditions: monograph. Dneprodzerzhinsk: DGTU, 2016. 213 p.
9. Maksimov Е. А., Shatalov R. L., Boskhamdzhiev N. Sh. Production of high-flatness strips by rolling. Moscow: Teplotekhnik. 2008. 336 p.

10. Wang X., Yang Q., Jiang Z., Xu J. Research on the Improvement Effect of High Tension on Flatness Deviation in Cold Strip Rolling. Steel Research International. 2014. Vol. 85. Issue 11. pp. 1560-1570. DOI: 10.1002/srin.201400048.
11. Belskiy S. М., Mazur I. P., Lezhnev S. N., Panin E. A. Strip shaping when thin-sheet rolling. Temirtau: KGIU. 2016. 161 p.
12. Vasilyev Ya. D., Samokish D. N., Zamogilnyi R. A., Zheleznov D. V. Experimental study of the effect of tension on rolling force and plasticity curves during cold rolling. Obrabotka materialov davleniem. 2017. Vol. 44. No. 1. pp. 192-198.
13. Kalvin R., Mustafa M. W., Javid W., Ashraf T., ShoukatI., Riaz M. T. To Compare Rolling Force, Torque and Power of Pure Aluminium and Stainless Steel in Cold Rolling Process. International Journal of Scientific & Engineering Research. 2019.Vol. 10. Iss. 4. April. pp. 1186-1189.
14. Ilin K., Baranov G. Research on the influence of the strip tension on contact stress and cold rolling force with a strain-hardening. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 966. 012026.
15. Vasilyev Ya. D., Samokish D. N. Effect of tension and reduction modes on energy consumption during cold rolling. Obrabotka materialov davleniem. 2013. Vol. 36. No. 3. pp. 154–159.
16. Ivoditov V. А., Trayno A. I., Volshonok I. Z., Rusakov A. D. Modern methods of increasing the efficiency of sheet rolling production. Moscow: Izdatelskiy Dom MISiS, 2013. 288 p.
17. Kozhevnikov A., Shalaevsky D. Computer-Aided Design (CAD) of Energy-Efficient Cold Rolling Technology. Steel in Translation. 2020. Vol. 50. No. 1. pp.:13-17.
18. Garber E. A., Pavlov S. I., Kozhevnikova I. A., Timofeeva M. A., Kuznetsov V. V. Improvement of the surface quality of sheet steel based on new solutions in the theory of cold rolling. Vestnik Cherepovetskogo gosudarstvennogo universiteta. 2010, No. 2. pp. 116-125.
19. Shafiei B., Ekramian M., Shojaei K. Robust Tension Control of Strip for 5-Stand Tandem Cold Mills. Journal of Engineering. 2014. Article ID 109014. 13 p. DOI: 10.1155/2014/409014.
20. Nascimento H. L. F., Shigaki Y., Santos S. C., Hubinger A. Z. A study of the rolling load calculation models for flat cold rolling process. CILAMCE 2016: Proceedings of the XXXVII, ABMEC, Brasilia, DF. Brazil, November 6-9, 2016. https://periodicos.unb.br/index.php/ripe/article/download/21052/19388/36802.
21. Bu H. N., Yan Z. W., Zhang D. H., Chen S. Z. Rolling-schedule multi-objective optimization based on influence function for thin-gauge steel strip in tandem cold rolling. Scientia Iranica В. 2016. Vol. 23. No. 6. pp. 2663-2672.
22. Asghar M. T., Jungers M., Morarescu I.-C., Khelassi A., Francken. Tandem Cold Rolling Mill Modeling for Multi-variable Control Synthesis. 17th IFAC Symposium on Control, Optimization and Automation in Mining, Mineral and Metal Processing, Aug 2016, Vienna, Austria. ffhal-01393445f: https://hal.archives-ouvertes.fr/hal-01393445/document.
23. Kozhevnikov А., Kozhevnikova I., Bolobanova N. Development of the model of cold rolling process in dynamic conditions. Journal of Chemical Technology and Metallurgy. 2018. Vol. 53 No. 2. pp. 366-372.
24. Garber E. А. Rolled metal production. Book 1. Production of cold-rolled strips and sheets (assortment, theory, technology, equipment): Reference edition. Moscow: Teplotekhnik, 2007. Vol. I. 368 p.
25. Konovalov Yu. V. Rollerman`s Directory. Reference edition in 3 books. Book 2. Production of cold rolled sheets and strips. Moscow: Teplotekhnik. 2010. 608 p.
26. Zenchenko F. I., Nogovitsyn A. V., Mazur V. L. et. al. Efficient technology for cold rolling of thin sheet steel on continuous mills. Stal. 1985. No. 1. pp. 43-48.
27. Rumyantsev M. I., Gorodnicheva T. V. The first approximation of the tension mode during cold rolling on a continuous mill. Modeling and development of technological processes of metal forming: collection of scientific works. Magnitogorsk: Izdatelstvo Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova, 2004. pp. 48-53.
28. Sarychev B. A., Denisov S. V., Gorbunov A. V., Rumyantsev M. I. Analysis of the peculiarities of the operating modes of the pickling and rolling mill 2000 of OJSC MMK. Works of the IX Congress of Rollermen. 2013. pp. 141-146.
29. Kuznetsov L. А. Application of control computer to optimize thin-sheet rolling. Moscow: Metallurgiya, 1988. 304 p.
30. Zheleznov Yu. D., Chernyi V. A., Koshka A. P. Improvement of the production of cold rolled sheet steel. Moscow: Metallurgiya, 1982. 232 p.
31. Rumyantsev M. I., Zavalishchin A. N., Kolybanov A. N., Lomakin A. D., Dontsov A. S. Algorithm for estimating the stability boundaries of the cold rolling process. In the collection: Current issues and prospects for the development of science, technology and education. Materials of the 1st National Scientific and Practical Conference. Magnitogorsk: Izdatelstvo Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova, 2020. pp. 969-971.

Language of full-text russian
Full content Buy
Back