Journals →  Tsvetnye Metally →  2021 →  #12 →  Back

MATERIALS SCIENCE
ArticleName Localized corrosion of magnesium alloys potentially applicable for medical implants: fundamental aspects
DOI 10.17580/tsm.2021.12.07
ArticleAuthor Gnedenkov A. S., Lamaka S. V., Sinebryukhov S. L., Filonina V. S., Zheludkevich M. L., Gnedenkov S. V.
ArticleAuthorData

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia:

A. S. Gnedenkov, Lead Researcher, Doctor of Сhemical Sciences, e-mail: asg17@mail.com
S. L. Sinebryukhov, Associate Professor, Deputy Director, Doctor of Сhemical Sciences, e-mail: sls@ich.dvo.ru
V. S. Filonina, Junior Researcher, e-mail: filonina.vs@gmail.com

S. V. Gnedenkov, Director, Corresponding member of RAS, Doctor of Сhemical Sciences, Professor, e-mail: svg21@hotmail.com

 

Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht, Germany:
M. L. Zheludkevich, Director, Professor, Сandidate of Сhemical Sciences, e-mail: mikhail.zheludkevich@hereon.de

S. V. Lamaka, Head of the Department of Electrochemistry and Big Data, Сandidate of Сhemical Sciences, e-mail: sviatlana.lamaka@hereon.de

Abstract

A comparative analysis of the corrosion activity of bioresorbable MA8 magnesium alloy (Mg– Mn – Ce system) in a medium for cultivation of mammalian cells (minimum essential medium, MEM) and 0.83 wt. % aqueous NaCl solution was performed. The development of the corrosion process on the surface of a magnesium alloy in two media was established using local scanning electrochemical methods (scanning vibrating electrode technique and scanning ion-selective electrode technique), traditional electrochemical methods (potentiodynamic polarization, electrochemical impedance spectroscopy) and hydrogen evolution measurements. The protective properties of the corrosion film formed on the alloy in MEM, as well as during exposure to NaCl solution, were established. The composition of the layer of corrosion products formed on the magnesium alloy in MEM was studied using confocal Raman spectroscopy, X-ray diffraction analysis, scanning electron microscopy, and energy dispersive X-Ray analysis. Calcium-phosphate compounds are the main products formed on the surface of a magnesium alloy during immersion in MEM. The model of corrosion mechanism of magnesium alloy in MEM, which includes three stages of the development of surface film, is proposed. The formation on the magnesium alloy in MEM of corrosion product layer, including magnesium-substituted hydroxyapatite, stabilizes the local pH below 9.0, which along with the presence of organic acids, does not allow increasing the pH during corrosion. A diagram that allows one to determine the possible reactions occurring on the surface of a magnesium alloy in MEM and the thermodynamic probability of the formation of chemical compounds based on the values of the local pH is designed. The obtained results indicate the prospect of using bioresorbable magnesium implants in surgery.

keywords Magnesium alloy, cell culture medium, bioresorption, corrosion rate, local electrochemical methods, corrosion mechanism, implant surgery
References

1. Galvin E., Jaiswal S., Lally C., MacDonald B., Duffy B. In vitro corrosion and biological assessment of bioabsorbable WE43 Mg alloy specimens. Journal of Manufacturing and Materials Processing. 2017. Vol. 1, No. 1. p. 8.
2. Kulchin Yu. N., Nikitin A. I., Nikiforov P. A., Pivovarov D. S., Yatsko D. S. et al. Laser additive manufacturing of bioresorbable magnesium implants and its automation. Proceedings of the 9th International Workshop on Fiber Lasers of the Institute of Automation and Electrometry at the Siberian Branch of the Russian Academy of Sciences. 2020. pp. 154–155.
3. Khlusov I. A., Mitrichenko D. V., Prosolov A. B., Nikolaeva O. O., Slepchenko G. B. et al. A brief overview of biomedical properties and applications of magnesium alloys for bone tissue engineering. Bulletin of Siberian Medicine. 2019. Vol. 18, No. 2. pp. 274–286.
4. Kiselevskiy M. V., Anisimova N. Yu., Polotskiy B. E., Martynenko N. S., Lukianova E. A. et al. Biodegradable magnesium alloys as an innovative material for medical applications: A review. Sovremennye tehnologii v medicine. 2019. Vol. 11, No. 3. pp. 146–157.
5. Volkov D. A., Leonov A. A., Mukhina I. Yu., Uridiya Z. P. Potential application of biodegradable magnesium alloys: A review. Trudy VIAM. 2019. No. 3. pp. 35–43.
6. Martynenko N. S., Lukianova E. A., Serebryanyi V. N., Anisimova N. Yu., Kiselevskiy M. V. et al. Effect of multiaxial deformation on the structure, texture, mechanical properties and performance of magnesium alloy WE43 used in medicine. Tekhnologiya legkikh splavov. 2018. No. 2. pp. 51–62.
7. Yurchenko N. Yu., Stepanov N. D., Salishchev G. A., Martynenko N. S., Lukianova E. A. et al. Understanding regularities behind structural formation during compression for selecting multiaxial deformation modes for Mg – Ca alloy. Metally. 2018. No. 6. pp. 38–53.
8. Liu Y., Zheng Y., Chen X., Yang J., Pan H. et al. Fundamental theory of biodegradable metals — definition, criteria, and design. Advanced Functional Materials. 2019. Vol. 29, No. 18. pp. 1805402.
9. Witte F., Fischer J., Nellesen J., Vogt C., Vogt J. et al. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomaterialia. 2010. Vol. 6, Iss. 5. pp. 1792–1799.
10. Esmaily M., Svensson J. E., Fajardo S., Birbilis N., Frankel G. S. et al. Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science. 2017. Vol. 89. pp. 92–193.
11. Cecchinato F., Agha N. A., Martinez-Sanchez A. H., Luthringer B. J. C., Feyerabend F. et al. Influence of magnesium alloy degradation on undifferentiated human cells. PLOS ONE. 2015. Vol. 10, Iss. 11. p. e0142117.
12. Virtanen S. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Materials Science and Engineering: B. 2011. Vol. 176, Iss. 20. pp. 1600–1608.
13. Myrissa A., Agha N. A., Lu Y., Martinelli E., Eichler J. et al. In vitro and in vivo comparison of binary Mg alloys and pure Mg. Materials Science and Engineering C. 2016. Vol. 61. pp. 865–874.
14. Chen Y., Dou J., Yu H., Chen C. Degradable magnesium – based alloys for biomedical applications: The role of critical alloying elements. Journal of Biomaterials Applications. 2019. Vol. 33, Iss. 10. pp. 1348–1372.
15. Hort N., Huang Y., Fechner D., Stormer M., Blawert C. et al. Magnesium alloys as implant materials-Principles of property design for Mg – RE alloys. Acta Biomaterialia. 2010. Vol. 6, Iss. 5. pp. 1714–1725.
16. Wang Y., Huang H., Jia G., Zeng H., Yuan G. Fatigue and dynamic biodegradation behavior of additively manufactured Mg scaffolds. Acta Biomaterialia. 2021. Vol. 135. pp. 705–722.
17. Zhang D., Zhou J., Peng F., Tan J., Zhang X. et al. Mg – Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis. Journal of Materials Science & Technology. 2022. Vol. 105. pp. 57–67.
18. Nikhil T.T., Shebeer A. R, Joseph M. A., Hanas T. In vitro biodegradation and biomineralization of Mg – Ca alloys. Materials Today: Proceedings. 2020. Vol. 22, Part 4. pp. 2870–2876.
19. Etim I. P., Zhang W., Tan L., Yang K. Influence of stamping on the biodegradation behavior of Mg – 2Zn – 0,5Nd (ZN20) sheet. Bioactive Materials. 2020. Vol. 5, Iss. 1. pp. 133–141.
20. Yang Y. X., Fang Z., Liu Y. H., Hou Y. C., Wang L. G. et al. Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent. Journal of Materials Science & Technology. 2020. Vol. 46. pp. 114–126.
21. Wagener V., Virtanen S. Influence of electrolyte composition (simulated body fluid vs. dulbecco’s modified eagle’s medium), temperature, and solution flow on the biocorrosion behavior of commercially pure Mg. Corrosion. 2017. Vol. 73, Iss. 12. pp. 1413–1422.
22. Williams G., Dafydd H. A.-L., McMurray H. N., Birbilis N. The influence of arsenic alloying on the localised corrosion behaviour of magnesium. Electrochimica Acta. 2016. Vol. 219. pp. 401–411.
23. Montemor M. F., Simões A. M., Carmezim M. J. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Applied Surface Science. 2007. Vol. 253, Iss. 16. pp. 6922–6931.
24. Gnedenkov A. S., Sinebryukhov S. L., Mashtalyar D. V., Gnedenkov S. V. Features of the magnesium alloys corrosion in the chloride-containing media. Solid State Phenomena. 2014. Vol. 213. pp. 143–148.
25. Gnedenkov A. S., Mei D., Lamaka S. V., Sinebryukhov S. L., Mashtalyar D. V. et al. Localized currents and pH distribution studied during corrosion of MA8 Mg alloy in the cell culture medium. Corrosion Science. 2020. Vol. 170. p. 108689.
26. Gnedenkov A. S., Sinebryukhov S. L., Mashtalyar D. V., Gnedenkov S. V. Inhibitor-Containing composite coatings on mg alloys: corrosion mechanism and self-healing protection. Solid State Phenomena. 2016. Vol. 245. pp. 89–96.
27. Gnedenkov A. S., Sinebryukhov S. L., Mashtalyar D. V., Vyaliy I. E., Egorkin V. S. et al. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection. Materials. 2018. Vol. 11, Iss. 11. p. 2177.
28. Gnedenkov A. S., Lamaka S. V., Sinebryukhov S. L., Mashtalyar D. V., Egorkin V. S. et al. Electrochemical behaviour of the MA8 Mg alloy in minimum essential medium. Corrosion Science. 2020. Vol. 168. p. 108552.
29. Gnedenkov A. S., Lamaka S. V., Sinebryukhov S. L., Mashtalyar D. V., Egorkin V. S. et al. Control of the Mg alloy biodegradation via PEO and polymer-containing coatings. Corrosion Science. 2021. Vol. 182. p. 109254.
30. Watchrarat K., Korchunjit W., Buranasinsup S., Taylor J., Ritruechai P., Wongtawan T. MEM α promotes cell proliferation and expression of bone marrow derived equine mesenchymal stem cell gene markers but depres ses differentiation gene markers. Journal of Equine Veterinary Science. 2017. Vol. 50. pp. 8–14.

Language of full-text russian
Full content Buy
Back