Journals →  Non-ferrous Мetals →  2022 →  #1 →  Back

AUTOMATION
ArticleName Simulation and algorithmization of analysis of heat and mass transfer processes in chemical electrothermy units in non-ferrous metallurgy
DOI 10.17580/nfm.2022.01.07
ArticleAuthor Pancnehko S. V., Dli M. I., Bykov A. A.
ArticleAuthorData

Branch of the National Research University “Moscow Power Engineering Institute”, Smolensk, Russia:

S. V. Pancnehko, Doctor of Engineering Sciences, Professor, Department of Physics, e-mail: tan_pan@inbox.ru
M. I. Dli, Professor, Doctor of Engineering Sciences, Deputy Director for Science, Head of the Department of Information Technologies in Economics and Management, e-mail: midli@mail.ru
A. A. Bykov, Deputy Professor, Candidate of Pedagogical Sciences, Head of the Department of Physics, e-mail: alex1by@mail.ru

Abstract

Proposed is an algorithm for calculating heat and mass transfer in electrothermal ore recovery processes in non-ferrous metallurgy. To implement the algorithm, the finite element method was used, which allows to take into account complex configuration of the internal volume of the reactor. A finite element grid automatic construction algorithm was used. An iterative algorithm for the finite element equations implementation with the matrix width optimization and the use of symmetry properties is proposed. A set of programs that allows to calculate operating modes of electrothermal ore-smelting reactors of any design, including those used in the smelting of non-ferrous metal alloys, has been developed. The interface of the programs is user-friendly. The multi-document interface provides visualization of the calculation results in the form of isolines of temperature fields and velocity vectors.

The work was carried out as part of the State task, project No. FSWF-2020-0019.

keywords Electrothermal reactors, heat and mass transfer processes, iterative algorithm, finite element method, computer simulation, simulation of reduction processes in non-ferrous metallurgy
References

1. Mikulinsky A. S. Parameters Determination of Ore-Thermal Furnaces Based on the Similarity Theory. Moscow: Energiya, 1964. 260 p.
2. Chumakov Yu. A., Mazmanyan V. A., Rumyan tsev D. V., Tsemekhman L. Sh., Egorov P. A. Analysis of Ore-Thermal Furnace Operation at “Pechenganickel” Combine Under Conditions of Changing of Charge Composition. Tsvetnye Metally. 2014. No. 1. pp. 35–40.
3. Kondreshev V. P., Mironov Yu. M., Kozlov A. I. et al. Study of the Operating Modes of Industrial Electric Furnaces for Calcium Carbide Production. Ore-smelting electric furnaces : collection of scientific works. Moscow : Energoatomizdat, 1988. pp. 32–38.
4. Nekhamin S. M. Band Structure of Bath of Electrode Smelting Furnaces at Operation on DC and Underfrequency Current. Metallurgist. 2014. No. 2. pp. 57–64.
5. Hariharan M., Rafi K. Mohd., Raghavan D. Modelling of Calcium Carbid Furnace. Bulletin of Electrochemistry. 1990. Vol. 6, Iss. 3. pp. 298–301.
6. Yang Y., Xiao Y., Reuter M. Analysis of Transport Phenomena in Submerged Arc Furnace for Ferrochrome Production. Tenth International Ferroalloy Congress, INFACON X: ‘Transformation through Technology, 1–4 February 2004, Cape Town, South Africa. pp. 15–25.
7. Scheepers E., Yang Y., Adema A. T., Boom R., Reuter M. A. Process Modeling and Optimization of a Submerged Arc Furnace for Phosphorus Production. Metallurgical and Materials Transactions B. 2010. Vol. 41, No. 5. pp. 990– 1005.
8. Rumyantsev D. V., Talalov V. A., Stepanov V. V., Rusakov M. R. Simulation of the Mass and Heat Transfer Processes in a Three-Electrode Round Depletion Furnace. Technology and Equipment of Ore-Smelting Production: Collection of Works of Scientific and Technical Conference with International Participation “Electrothermia-2008”. St. Petersburg, 2008. pp. 175– 187.
9. Pancnehko S. V., Dli M. I., Borisov V. V., Panchenko D. S. Analysis of Thermalphysic Processes in Near-Electrode Zone of Electrothermal Reactor. Non-ferrous Metals. 2016. No. 2. рр. 57–64. DOI: 10.17580/nfm.2016.12.12
10. Panchenko S. V., Dli M. I., Bobkov V. I., Panchenko D. S. Problems of Analysis of Thermalphysic Processes in a Reaction Zone of Electrothermal Reactor. Non-ferrous Metals. 2017. No. 1. pp. 36–42. DOI: 10.17580/nfm.2017.01.08
11. Puchkov A. Yu., Lobaneva E. I., Kultygin O. P. Algorithm for Predicting the Parameters of a System for Processing Waste Apatite-Nepheline Ores. Journal of Applied Informatics. 2022. Vol. 17, No. 1. pp. 55–68.
12. Dli M. I., Vlasova E. A., Sokolov A. M., Morgunova E. V. Creation of a Chemical-Technological System Digital Twin Using the Python Language. Journal of Applied Informatics. 2021. Vol. 16, No. 1. pp. 22–31.
13. Zhilov G. M., Valkova Z. A., Tarasov V. A., Tavrin N. Yu. Effect of Electrical Processing Regime on the Parameters of the Phosphorus Furnace Gas. Sovershenstvovanie Protsessov i Apparatov Proizvodstva Karbida Kaltsiya, Fosfora i Fosfornykh Solei. Leningrad : LenNIIGiproKhim, 1988, pp. 93–103.

14. Panchenko S. V., Panchenko D. S., Glebova N. B. Trans fer Processes in Heterogeneous Reduction Reactors. Theoretical Found ations of Chemical Engineering. 2004. Vol. 38, Iss. 6. pp. 611–615.
15. Huyakorn P. S. Solution of Steady-State, Convective Transport Equation Using an Upwind Finite Element Scheme. Applied Mathematical Modelling. 1977, Vol. 1, Iss. 4. pp. 187–195.
16. Hasbani Y., Engelman M. Out-of-Core Solution of Linear Equations with non-Symmetric Coefficient Matrix. Computers & Fluids. 1979. Vol. 7, Iss. 1. pp. 13–31.
17. Yanenko N. N., Danaev N. T., Liseikin V. D. A variational method for grid generation. Chislennye Metody Mekhaniki Sploshnoi Sredy. 1977. Vol. 8, Iss. 4. pp. 157–163.
18. George A., Liu J. W.-H. Computer Solution of Large Sparce Positive Definite Systems. Transl. from Eng. by Kh. D. Ikramov. Moscow: Mir, 1984. 333 p.
19. Kuznetsov Yu. A. Computational Methods in Subspaces. Computational Processes and Systems. Iss. 2. Moscow : Nauka, 1985. pp. 265–350.
20. Marchuk G. I., Kuznetsov Yu. A., Iterative Methods and Quadratic Functionals. Novosibirsk: Nauka, Sibirskoye otdeleniye, 1972. 205 p.
21. Polezhaev V. I., Prostomolotov A. I., Fedoseev A. I. Finite Element Method in Viscous Fluid Mechanics. Itogi nauki i tekhniki VINITI AN SSSR. Seriya: Mekhanika zhidkosti i gasa. 1987. Vol. 21. pp. 3–92.
22. Tesser R., Santacesaria E. Revisiting the Role of Mass and Heat Transfer in Gas–Solid Catalytic Reactions. Processes. 2020. Vol. 8, Iss. 12. p. 1599.
23. Hu H.-P. Theoretical Study of Convection Heat Transfer and Fluid Dynamics in Microchannels with Arrayed Microgrooves. Mathematical Problems in Engineering. Vol. 2021. pp. 1–12.
24. Valkova Z. A., Dantsis Ya. B., Zhilov G. M., Antonos E. R. Electric Field in the Phosphorus Furnace Bath. Issledovanie i razrabotka elektrooborudovaniya i sistem avtomaticheskogo upravleniya moshchnykh rudnotermicheskikh pechei. 1975. Iss. 20. pp. 34–41.
25. Zhilov G. M., Valkova Z. A., Dressen V. V. Methodical Recommendations on the Determination of Energy Distribution in Baths of Chemical Electrothermal Furnaces. Leningrad : LenNIIGiproKhim, 1985. 32 p.

Full content Simulation and algorithmization of analysis of heat and mass transfer processes in chemical electrothermy units in non-ferrous metallurgy
Back