Journals →  CIS Iron and Steel Review →  2022 →  #1 →  Back

Preparation of raw materials
ArticleName Study of possibility of magnetic hydrocyclone use in concentration cycles of oxidized ferriferous quartzites
DOI 10.17580/cisisr.2022.01.01
ArticleAuthor V. V. Lvov, T. N. Aleksandrova, V. B. Kuskov, A. E. Pelevin

St. Petersburg Mining University (St. Petersburg, Russia):

V. V. Lvov, Cand. Eng., Associate Prof., Dept. of Mineral Processing, e-mail:
T. N. Aleksandrova, Dr. Eng., Prof., Head of Dept. of Mineral Processing, e-mail:
V. B. Kuskov, Cand. Eng., Associate Prof., Dept. of Mineral Processing, e-mail:


Ural State Mining University (Ekaterinburg, Russia):
A. E. Pelevin, Dr. Eng., Associate Prof., Dept. of Mineral Processing, e-mail:


Iron role is very essential in the up-to-date economics. Magnetite quartzites are the main source of iron making in Russia. Oxidized ferriferous quartzites are also used for accumulation of the Russian mineral and raw material base. Substantial composition and concentration capacity of the represented sample of oxidized iron ore are examined. Ore sample was ground during two stages in a ball mill and IsaMill mill. Comminuted material was classified in magnetic hydrocyclone of original construction. Magnetic system, which was mounted on the hydrocyclone, had been designed using computer software ANSYS Maxwell for simulation of electromagnetic fields and had been manufactured with use of permanent magnets made of Nd–Fe–B alloys on the base of rare earth elements. Classifying products in magnetic hydrocyclone were concentrated consequently in low- and high-intensive magnetic fields. Technological scheme for concentration of oxidized ferriferous quartzites was developed. This scheme allows to produce high-quality magnetite concentrate, hematite concentrate and mixed hematite – magnetite concentrate.

The research was conducted at the expense of the grant for execution of the State assignment № FSRW-2020-0014 in the field of scientific activity on 2021.

keywords Iron ore raw material, IsaMill grinding technology, magnetic hydrocyclone, classifying, magnetic separation, high-gradient magnetic separation, oxidized ferriferous quartzites

1. Nedosekin A. O., Reishakhrit E. I., Kozlovskiy A. N. Strategic approach to assessment of economical sustainability of the objects of Russian mineral and raw material complex. Zapiski Gornogo instituta. 2019. Vol. 237. pp. 354-360. DOI: 10.31897/PMI.2019.3.354.
2. Yurak V. V., Dushin A. V., Mochalova L. A. Against sustainable development: the future scenarios. Zapiski Gornogo instituta. 2020. Vol. 242. pp. 242-247. DOI: 10.31897/PMI.2020.2.242.
3. Litvinenko V. S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Natural Resources Research. 2020. Vol. 29. pp. 1521–1541.
4. Tsvetkova A., Katysheva E. Present problems of mineral and raw materials resources replenishment in Russia. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 2019. Volume 19. Iss. 5.3. рр. 573-578. DOI: 10.5593/sgem2019/5.3/S21.072.
5. Rovenskikh M. V., Kobzeva A. G. Analysis of iron ore reserves in Russia and worldwide. Tsifrovaya ekonomika. Problemy i perspektivy razvitiya. 2019. рр. 318-323.
6. Rastyannikova E. V. Iron ore industry in BRICS countries – prospective of the 4th industrial revolution. Ekonomika: vchera, segodnya, zavtra. 2018. Vol. 8. No. 8A. рр. 334-346.
7. Novikova L. K. Iron ore processing and concentration. Akademik NAN RK Gazaliev A.M. 2016. 64 p.
8. Pelevin A. E. Increasing the efficiency of iron ore dressing by separation in an alternative magnetic field. Chernye metally. 2021. No. 5. рр. 4-9. DOI: 10.17580/chm.2021.05.01.
9. Vasilev Y., Vasileva P. Effects of coal preparation and processing in the Russian coal value chain. 18th International multidisciplinary scientific geoconference SGEM 2018. Ecology, economics, education and legislation. Vol.18. Issue 5.3. 2 July – 8 July, 2018. Albena, Bulgaria. pp. 319-326.
10. Stroykov G., Cherepovitsyn A. Y. Iamshchikova E. A. Powering Multiple Gas Condensate Wells in Russia’s Arctic: Power Supply Systems Based on Renewable Energy Sources. Resources. 2020, Vol. 9. p. 130. DOI: 10.3390/resources9110130.
11. Melnichuk M. S., Fokina S. B., Boduen A. Ya., Petrov G. V. Co-recovery of platinum-group metals and chrome in processing of low-grade dunite ore material. Obogashchenie rud. 2018. No. 1. pp. 50-55.
12. Larionov A. N. et al. Oxidized iron ores as an object for concentration. Ratsionalnoe osvoenie nedr. 2020. No. 6. pp. 76-89.
13. Patra S. et al. Mineralogical and Chemical Characterization of Low Grade Iron Ore Fines from Barsua Area, Eastern India with Implications on Beneficiation and Waste Utilization. Journal of the Geological Society of India. 2019. Vol. 93. No. 4. pp. 443-454.
14. Yushina T. I., Krylov I. O., Valavin V. S., Toan V. V. Old ironbearing waste treatment technology. Eurasian Mining. 2018. No. 1. pp. 16-21. DOI: 10.17580/em.2018.01.04.
15. Nikolaeva N. V., Aleksandrova T. N., Chanturiya E. L., Afanasova A. Mineral and technological features of magnetite-hematite ores and their influence on the choice of processing technology. ACS Omega. 2021. No. 6 (13). pp. 9077-9085. DOI: 10.1021/acsomega.1c00129.
16. Petrov G. V., Fokina S. B., Boduen A. Ya., Fidarov B. F., Zotova I. E. Aspects of electrochemical reaction mechanics of magnetite reductive leaching in sulfuric acid medium. International Journal of Mechanical Engineering and Technology. 2019. No. 10 (1). pp. 1595-1601.
17. Bauman A. V. Hydrocyclones. Theory and practice. Series “Concentration processes and machines in chemical technology”. Novosibirsk. 2020. 60 p.
18. Abduramanov A. Hydraulics of hydrocyclones and hydrocyclone pump units. Monography. Moscow. Izdatelskiy dom Akademii Estestvoznaniya. 2018. 240 p.
19. Prosvirnin V. I., Golikov S. P., Avdeev B. A. Model of distribution of radial magnetic field in a hydrocyclone. Vestnik Khersonskogo natsionalnogo tekhnicheskogo universiteta. 2013. No. 1 (46). pp. 300-304.
20. Osipova N. V. Model for optimal control of a magnetic separator based on the Bellman dynamic programming method. Chernye metally. 2020. No. 7. рр. 9-13.
21. Prosvirnin V. I., Masyutkin E. P., Avdeev B. A. Use of coagulation mathematical model for operating efficiency assessment of magnetic hydrocyclone. Proceedings of XII scientific and technical conference. Sevastopol. October 23-27, 2013. SevNTU. pp. 209-211.
22. Gzogyan T. N. Features of composition and building of oxidized ferriferous quartzites at KMA Mikhailovskoe deposit. Gornyi informatsionno-analiticheskiy byulleten. 2012. No. 4. pp. 3-16.
23. Anderson G. S., Bandarian P. A. Improving IsaMill™ energy efficiency through shaft spacer design. Minerals Engineering. 2019. Vol. 132. pp. 211-219.
24. David D., Larson M., Le M. Optimising Western Australia Magnetite Circuit Design. In: Proceedings MetPlant. Perth, Australia. 2011. pp. 552-562.
25. Upraviteleva A. A., Lvov V. V. Study of the effect of magnetic hydrocyclone in classifying of oxidized ferriferous quartzites. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syrya. 2020. pp. 175-180.
26. Valeev S. I., Savchuk V. A. Simulation of separation process in a hydrocyclone. Vysokie tekhnologii i innovatsii v nauke. 2020. pp. 61-65.
27. ANSYS Maxwell. URL: (reference date: 14.12.2020).
28. Quast K., Skinner W. Influence of matrix type on WHIMS performance in the magnetic processing of iron ores. Minerals Engineering. 2020. Vol. 152. June 15. p. 106346. DOI: 10.1016/j.mineng.2020.106346.
29. Trushko V. L., Utkov V. A. Development of import replacing technologies for productivity rise of sintering machines and increase of agglomerates strength. Zapiski Gornogo instituta. 2016. Vol. 221. pp. 675-680. DOI: 10.18454/PMI.2016.5.675.
30. Argimbaev K. R., Kornev A. V., Kholodnyakov G. A. Substantiation of involvement possibility in processing of iron-bearing tails with consequent pelletizing of obtained concentrates. Zapiski Gornogo instituta. 2013. Vol. 206. pp. 120-124.

Full content Study of possibility of magnetic hydrocyclone use in concentration cycles of oxidized ferriferous quartzites