Журналы →  Цветные металлы →  2022 →  №7 →  Назад

Металлообработка
Название Деградация после термического и химического воздействия матричных кодов, сформированных с помощью лазеров на изделиях из латуни и алюминиевого сплава
DOI 10.17580/tsm.2022.07.10
Автор Пряхин Е. И., Трошина Е. А.
Информация об авторе

Санкт-Петербургский горный университет, кафедра материаловедения и технологии художественных изделий, Санкт-Петербург, Россия:

Е. И. Пряхин, заведующий кафедрой, профессор, докт. техн. наук, эл. почта: e-p-mazernbc@yandex.ru
Е. Ю. Трошина, аспирант, эл. почта: ivan.grey.90@mail.ru

Реферат

Применяемые для лазерной маркировки штриховые и матричные идентификационные коды, наносимые на металлическую или неметаллическую поверхности изделий, для надежной считываемости должны иметь качественное контрастное изображение как непосредственно после нанесения, так и в процессе их эксплуатации. Однако в процессе эксплуатации в условиях повышенных температур и воздействия агрессивных жидкостей (кислот, щелочей и др.) может происходить деградация структуры материала изделий и, соответственно, контрастности изображений кодов, что приводит к ухудшению их считываемости с помощью оптических устройств. Кроме того, эффективность деградации контрастности кодов зависит от материала изделий. В статье приведены данные по изучению деградации после термического и химического воздействия матричных кодов, сформированных с помощью лазеров на изделиях из латуни марки Л63 и алюминиевого сплава Д16. Показано, что температура термической устойчивости идентификационных лазерных кодов для латуни составляет 200 oC, у алюминиевого сплава устойчивость считываемости штрихкодов сохраняется до температуры 600 oC. Существенные изменения отмечены в плане деградации кодов на изделиях из латуни при воздействии растворов кислот с концентрацией 2 %. У алюминиевого сплава воздействие 2%-ного раствора соляной кислоты не привело к заметным изменениям контрастности кодов. При обработке латуни с нанесенным кодом растворами щелочей ее поверхность сильно потемнела, контрастность кодов значительно снизилась, считываемость кодов заметно ухудшилась. У алюминиевого сплава контрастность кодов после воздействия щелочи изменилась незначительно.

Ключевые слова Штрихкоды, матричные идентификационные коды, лазерная маркировка, контрастность и деградация кодов, термическая устойчивость, считываемость кодов, фальсификат, контрафакт
Библиографический список

1. Jianmei Li, Shanghai Lu, Aiqun Wang, Yusong Wu, Zhuo Ma et al. Experimental investigation and mathematical modeling of laser marking twodimensional barcodes on surfaces of aluminum alloy. Journal of Manufacturing Processes. 2016. Vol. 21. pp. 141–152.
2. Yu-Cheng Lin, Weng-Fong Cheung, Fu-Cih Siao. Developing mobile 2D barcode/RFID-based maintenance management system. Automation in Construction. 2014. Vol. 37. pp. 110–121.
3. Moreno J. M., Marcén P. G., Torcal R. M. Data matrix (DM) codes: A technological process for the management of the archaeological record. Journal of Cultural Heritage. 2011. Vol. 12, Iss. 2. pp. 134–139.
4. Dumont Th., Lippert T., Wokaun A., Leyvraz P. Laser writing of 2D data matrices in glass. Thin Solid Films. 2004. Vol. 453-454. pp. 42–45. DOI: 10.1016/j.tsf.2003.11.148.
5. Ahearne E. Engineering the surface for direct part marking (DPM). CIRP Journal of Manufacturing Science and Technology. 2020. Vol. 29. pp. 1–10. DOI: 10.1016/j.cirpj.2020.01.003.
6. Reuben S., Xun Xu. Product traceability in manufacturing: A technical review. Procedia CIRP. 2020. Vol. 93. pp. 700–705. DOI: 10.1016/j.procir.2020.04.078.
7. Li C. L., Lu C., Li J. M. Nanosecond laser direct-part marking of data matrix symbols on titanium alloy substrates. Key Engineering Materials. 2018. Vol. 764. pp. 194–200.
8. Larionova E. V., Khromova E. I. Trasformation of graphic objects when preparing models for laser treatment. Zapiski Gornogo instituta. 2014. No. 209. pp. 225–228.
9. Xia-Shuang Li, Wei-Ping He, Lei Lei, Jian Wang, Gai-Fang Guo et al. Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy. Optics and Laser Technology. 2016. Vol. 77. pp. 31–39.
10. Li C. L. Nanosecond laser direct part marking of data matrix symbols on titanium alloy substrates. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 380. p. 012022. DOI: 10.1088/1757-899X/380/1/012022.
11. Nikolaev A., Phyo A., Pompeev K., Vasilev O. Modernization of machining centers through integration of laser systems into their composition. International Review of Mechanical Engineering. 2020. Vol. 14, Iss. 2. pp. 100–104. DOI: 10.15866/ireme.v14i2.18242.
12. Murzin S. P., Osetrov E. L., Tregub N. V., Malov S. A. Improving the depth evenness in the nanoporous structure region when using a focusator of laser radiation. Computer Optics. 2010. Vol. 34, No. 2. pp. 219–224.
13. Alekseev V. I., Barakhtin B. K., Zhukov A. S. Chemical heterogeneity as a strength raising factor in SLM steels. Journal of Mining Institute. 2020. Vol. 242. pp. 191–196. DOI: 10.31897/pmi.2020.2.191.
14. Wei-ping He, Qing-song Lin, Wei Wang, Xi-zheng Cao, Gai-fang Guo. Research on cylinder data matrix barcode recognition. AASRI Procedia. 2012. Vol. 3. pp. 319–327.
15. Konchus D., Salpagarov E., Sivenkov A. Temperature influence on readability of the QR-code on titanium alloy. Key Engineering Materials. 2022. Vol. 909. pp. 54–59. DOI: 10.4028/p-4hhoi9.
16. Kuсera M., Švantnera M., Smazalová E. Influence of laser marking on stainless steel surface and corrosion resistance. METAL 2014 – 23rd International Conference on Metallurgy and Materials. Conference Proceedings. 2014. pp. 890–895.
17. Vedel-Smith N., Lenau T. Casting traceability with direct part marking using reconfigurable pin-type tooling based on paraffin-graphite actuators. Journal of Manufacturing Systems. 2012. Vol. 31. pp. 113–120.
18. Ganzulenko O. Yu., Petkova A. P. Selecting a steel composition to produce full colour spectrum surface images by pulsed laser radiation. Journal of Mining Institute. 2014. Vol. 209. pp. 216–219.
19. Chen Ch., Alex C. Kota, Yang H. A two-stage quality measure for mobile phone captured 2D barcode images. Pattern Recognition. 2013. Vol. 46, Iss. 9. pp. 2588–2598.
20. Grover A., Braeckel P., Lindgren K., Berghel H., Cobb D. Parameters Effecting 2D Barcode Scanning Reliability. Advances in Computers. 2010. Vol. 80. pp. 209–235.
21. Zakharov L. A., Bulgakova N. M. Numerical modelling of laser ablation of metals and polymers under infrared radiation pulses: Effect of the starting temperature of the specimen. Vestnik NSU. Series: Physics. 2010. Vol. 5, No. 1. pp. 37–47.
22. Fomin V. M., Golyshev A. A., Orishich A. M., Shulyatiev V. B. The energy of high-quality steel cutting with fiber and CO2 lasers. Prikladnaya mekhanika i tekhnicheskaya fizika. 2017. Vol. 58, No. 2. pp. 212–220. DOI: 10.15372/PMTF20150420.
23. Maksarov V. V., Khalimonenko A. D., Gorshkov I. V. Effect of the structural parameters of ceramic cutters on machining quality when doing tool selection. Metalloobrabotka. 2020. No. 115. pp. 54–62. DOI: 10.25960/mo.2020.1.54.
24. Murzin S. P. Identifying conditions in which nanoporous structures form in metallic materials under laser action. Bulletin of Saratov State Vavilov Agrarian University. 2014. No. 47. pp. 67–74.
25. Kolobov Y., Manokhin S., Odintsova G., Betekhtin V., Kadomtsev A. et al. Studying the influence of nanosecond pulsed laser action on the structure of submicrocrystalline titanium. Technical Physics Letters. 2021. Vol. 47, No. 10. pp. 721–725. DOI: 10.1134/S1063785021070245.
26. Olt J., Maksarov V. V., Krasnyi V. A. Examining the wear resistance of bearings used in mine dump truck engines and exposed to fretting corrosion. Journal of Mining Institute. 2019. Vol. 235. pp. 70–77. DOI: 10.31897/pmi.2019.1.70.
27. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Method of convex marking of the surfaces of steel products using a pulsed 50-W infrared fiber laser. Metally. 2020. No. 13. pp. 1513–1517.
28. Piirainen V. Yu., Barinkova A. A., Starovoytov V. N., Barinkov V. M. Deactivation of red mud by primary aluminum production wastes. Key Engineering Materials. 2021. Vol. 1040. pp. 109–116. DOI: 10.4028/www.scientific.net/MSF.1040.109.
29. Sivenkov A. V., Chirkova O. S., Konchus D. A., Mihailov A. V. Development of flux for protection of the surface of liquid-metallic low-melting-point fusible melt. Key Engineering Materials. 2020. Vol. 854. pp. 126–132. DOI: 10.4028/www.scientific.net/KEM.854.126.
30. Kayukov S. V., Zaychikov E. G., Dudorov I. A., Krysanov S. A., Polyakov V. N. Optimized laser treatment regimes for anysotropic electrical steel. Izvestiya Samarskogo nauchnogo tsentra RAN. 2003. Vol. 5, No. 1. pp. 66–73.
31. Ganzulenko O. Y., Petkova A. P. Testing a nano-barcodes marking technology for identification and protection of the mechanical products. Journal of Physics: Conference Series. 2020. No. 1. pp. 1–7. DOI: 10.1088/1742–6596/1582/1/012032.
32. Veyko V. P., Odintsova G. V., Karlagina Yu. Yu., Andreeva Ya. M., Ageev E. I. et al. Understanding the effect of entrance angle on stainless steel surface reflection spectra during oxidation caused by pulsed laser radiation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2016. Vol. 16, No. 3. pp. 422–427. DOI: 10.17586/2226–1494.
33. Bolobov V. I., Popov G. G. A method for testing pipe steels for resistance to rill corrosion. Journal of Mining Institute. 2021. Vol. 252. pp. 854–860. DOI: 10.31897/PMI.2021.6.7.
34. Xiaoyun Sun, Wenjun Wang, Xuesong Mei, Aifei Pan, Bin Liu et al. Controllable dot-matrix marking on titanium alloy with anti-reflective microstructures using defocused femtosecond laser. Optics and Laser Technology. 2019. Vol. 115. pp. 298–305.
35. Kruchinin A. Yu. Recognition of industrial DataMatrix barcodes with random tilt and rotation. Computer Optics. 2014. Vol. 38, No. 4. pp. 865–870. DOI: 10.18287/0134-2452-2014-38-4-865-870.
36. Shakhnazarov K. Yu. Property anomalies of unalloyed pre-eutectoid steel melts at ~0.5% C as a consequence of the intermediate Fe42C phase. Steel in Translation. 2020. No. 4. pp. 261–265. DOI: 10.3103/S0967091220040087.
37. Amiaga J. V., Ramos-Velazquez A., Gorny S. G., Vologzhanina S. A., Michtchenko A. Groove formation on metal substrates by nanosecond laser removal of melted material. Metals. 2021. Vol. 11(12). p. 2026. DOI: 10.3390/met11122026.

Language of full-text русский
Полный текст статьи Получить
Назад