Journals →  Tsvetnye Metally →  2022 →  #7 →  Back

METAL PROCESSING
ArticleName Laser marking of non-ferrous metal and alloy products using ultradense barcodes: process features
DOI 10.17580/tsm.2022.07.11
ArticleAuthor Petkova A. P., Ganzulenko O. Yu.
ArticleAuthorData

Saint Petersburg Mining University, Saint Petersburg, Russia:

A. P. Petkova, Professor, Doctor of Technical Sciences, e-mail: petkova_AP@pers.spmi.ru
O. Yu. Ganzulenko, Associate Professor at the Department of Materials Science and Artwork Engineering, Candidate of Technical Sciences, e-mail: ganzulenko_OYu@pers.spmi.ru

Abstract

This paper describes the results of a study that looked at the effect of laser pulses on the surface of copper, aluminium and titanium alloys during laser marking. A series of studies has been carried out aimed at developing a process that would enable putting high-density barcodes on the surface of nonferrous metals in order to keep a great amount of data about the products and to protect them from counterfeiting. The paper explains why nanobarcodes are unique and how they outperform common standard markings. The colours of the markings are defined by the characteristics of the oxide films that form as the result of surface modification by laser pulses. They include the thickness of the oxide film and its phase and chemical compositions, which impact the chemical composition of the alloy and the temperaturetime modes of the laser marker. To ensure quality in marking, the authors selected the most contrasting tones of the resultant markings. Sets of such colours are presented that were obtained on the studied materials. The paper also describes the results of optical and electronic microscopy of the oxide films of the resultant markings demonstrating the structure of furrows and craters, which are the result of surface melting and evaporation under laser treatment. The paper analyzes the quality of the resultant nanobarcodes in terms of their readability and decodability by means of special software.

keywords Laser treatment, surface modification, marking, laser radiation, oxidation, barcode, nanobarcode, oxide films, anti-counterfeit protection
References

1. Carroll O., Tanguy Y., Houlihan J., Huyet G. Dynamics of a self-pulsing laser with delay, Proceedings of SPIE. The International Society for Optical Engineering. 2004. Vol. 77. pp. 628–635.
2. Valiulin A., Gorniy S., Grechko Yu., Patrov M., Yudin K. et al. Laser material marking. Photonics. 2007. No. 3. pp. 16–22.
3. Odintsova G., Andreeva Y., Salminen A., Roozbahani H., Van Cuong L. et al. Investigation of production related impact on the optical properties of color laser marking. Journal of Materials Processing Technology. 2019. Vol. 274. p. 116263. DOI: 10.1016/j.jmatprotec.2019.116263.
4. Gornyi S., Veyko V., Odintsova G., Loginov A., Karlagina Yu. et al. Colour laser marking of metal surface. PHOTONICS RUSSIA. 2013. Vol. 42, No. 6. pp. 34–45.
5. Veyko V. P., Gornyi S. G., Odintsova G. V., Patrov M. I., Yudin K. V. Multicoloured image formed on metal surface during its laser oxidation. Journal of Instrument Engineering. 2011. Vol. 54, No. 2. pp. 47–52.
6. Chirkova O. S., Konchus D. A., Sivenkov A. V. Effect of laser marking on the surface properties of 08Kh18N10 steel. Metalloobrabotka. 2018. No. 4. pp. 21–27.
7. Sivenkov A. V., Konovalov K. I., Zverkova E. I. Effect of laser marking on the changing structure and properties of austenitic steel. International Scientific Review. 2016. Vol. 11, No. 21. pp. 38–40.
8. Naumova M. G., Morozova I. G., Zarapin A. Yu., Borisov P. V. Copper alloy marking by altering its surface topology using laser heat treatment. Metallurg. 2018. Vol. 35. pp. 56–60.
9. Sivenkov A. V., Konchus D. A., Chirkova O. S., Pryakhin E. I. Assessment of laser marking contrast with profilometer. IOP Conference Series: Earth and Environmental Science. 2018. Vol. 194. p. 042022.
10. Pryakhin E. I. Nanobar code as multi-purpose two-dimensional notations with new features. Journal of Mining Institute. 2015. Vol. 215. pp. 97–100.
11. Ganzulenko O. Y., Petkova A. P. Testing a nano-barcodes marking technology for identification and protection of the mechanical products. Journal of Physics: Conference Series. 2020. Vol. 158. p. 012032. DOI: 10.1088/1742-6596/1582/1/012032.
12. Pryakhin E. I., Larionova E. V., Zakharenko E. A. Creating and approbation of the hardware and software complex for information fields application on the surface of products. Journal of Mining Institute. 2014. Vol. 209. pp. 234–238.
13. Ganzulenko O. Y., Petkova A. P. Simulation and approbation of the marking laser process on metal materials. Journal of Physics: Conference Series. 2021. Vol. 1753(1). p. 012016. DOI: 10.1088/1742-6596/1753/1/012016.
14. Rasskazchikov N. G., Polyakova A. A. Understanding the process of laser marking and its optimization. Mashinostroenie. 2019. Vol. 7, No. 1. pp. 9–13. DOI: 10.24892/RIJIE/20190102.
15. Odintsova G. V. Understanding and developing a process for colour laser marking of metals by local oxidation: Extended abstract of PhD dissertation. St Petersburg : Sankt-Peterburgskiy natsionalnyi issledovatelskiy universitet informatsionnykh tekhnologiy mekhaniki i optiki, 2014. 20 p.
16. Veiko V., Karlagina Y. Y., Moskvin M., Mikhailovskii V. Y., Odintsova G. et al. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses. Optics and Lasers in Engineering. 2017. Vol. 96. pp. 63–67.
17. Ageev E. I., Veiko V. P., Vlasova E. A., Karlagina Y. Y., Krivonosov A. S. et al. Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification. Optics Express. 2018. Vol. 26, Iss. 2. pp. 2117–2122.
18. Ma Xiaolei, Nie Xihan, Zhao Jingnan, Shrotriy Pranav, Zhang Yan. Effect of nanosecond pulsed laser parameters on the color marking of 304 stainless steel. Optics and Laser Technology. 2020. Vol. 126. p. 106104. DOI: 10.1016/j.optlastec.2020.106104.
19. Antonov D. N., Burtsev A. A., Butkovskiy O. Ya. Metal surface coloration under the effect of pulsed laser radiation. Zhurnal tekhnicheskoy fiziki. 2014. Vol. 84, Iss. 10. pp. 83–86.
20. Gorbatyuk S. M., Morozova I. G., Naumova M. G. Colour markings formed on metal surface with the help of a high-concentration energy source. Metallurg. 2016. No. 6. pp. 91–94.
21. Konchus D. A., Sivenkov A. V., Pryakhin E. I. Structural variations on the surface of metallic products at laser marking. CIS Iron and Steel Review. 2021. No. 2. pp. 96–101. DOI: 10.17580/cisisr.2021.02.18.
22. Konchus D. A., Sivenkov A. V. The Formation of Contrasting Nanofilms on a Metal Surface for Bar Coding. Key Engineering Materials. 2020. No. 854. pp. 97–102. DOI: 10.4028/www.scientific.net/KEM.854.97.
23. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Development of a fast method for forming Braille on the surface of steels with IR nanosecond pulsed 50W fiber laser. AIP Conference Proceedings. 2020. Vol. 2285.
24. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Method of Convex Marking of the Surfaces of Steel Products Using a Pulsed 50-W Infrared Fiber Laser. Metally. 2020. No. 13. pp. 1513–1517.
25. Pryakhin E. I., Ligachev A. E., Kolobov Y. R., Zakharenko E. A., Romanov V. V. Assessment of the thermal effect on the surface of metal structural materials on the stability of laser-induced codes readability. Materials Science Forum. 2021. Vol. 1040. pp. 47–54.
26. Morozova I. G., Naumova M. G, Zarapin A. Y., Borisov P. V. Copper alloy marking by altering its surface topology using laser heat treatment. Metallurgist. 2018. Vol. 62. pp. 464–469.
27. Gorbatuk S. M., Naumova M. G. Morozova I. G. Color mark formation on a metal surface by a highly concentrated energy source. Metallurgist. 2016. Vol. 60, Iss. 5. pp. 646–650.
28. Platov Yu. M., Lazorenko V. M., Tovtin V. I., Kazilin E. E. Effect of laser radiation on the structure of Al – Mg – Zn alloy. Fizika i khimiya obrabotki materialov. 2014. No. 6. pp. 84–85.
29. Veiko V. P., Odintsova G. V., Gazizova M. Y., Karlagina Y. Y., Manokhin S. S. et al. The influence of laser micro- and nanostructuring on the wear resistance of Grade-2 titanium surface. Laser Physics. 2018. Vol. 28, No. 8. p. 086002.
30. Konchus D. A., Sivenkov A. V. A surface structure formation of stainless steel using a laser. Materials Science Forum. 2021. No. 1022. pp. 112–118.
31. Olt J., Maksarov V., Efimov A. Improving the quality of critical tractor parts through the dynamic stabilisation of the manufacturing process in regard to CNC machines. Agronomy Research. 2019. Vol. 17. pp. 1146–1154.
32. Alekseev V. I., Barakhtin B. К., Zhukov A. S. Chemical heterogeneity as a factor of improving the strength of steels manufactured by selective laser melting technology. Journal of Mining Institute. 2020. Vol. 242. pp. 191–196. DOI: 10.31897/pmi.2020.2.191.
33. Morozova I. G., Naumova M. G., Zarapin A. Yu., Borisov P. V. Copper alloy marking by altering its surface topology using laser heat treatment. Metallurg. 2018. No. 5. pp. 56–60.
34. Golosov E. V., Emelyanov V. I., Ionin A. A., Kolobov Yu. R., Kudryashov S. I., Ligachev A. E. et al. Modification of titanium surface by femtosecond pulse laser radiation. Fizika i khimiya obrabotki materialov. 2010. No. 2. pp. 10–15.
35. Chin-Lunchang, Chung-Wei Cheng, Jinn-Kuen Chen. Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison. Applied Surface Science. 2019. Vol. 469. pp. 904–910. DOI: 10.1016/j.apsusc.2018.11.059.

Language of full-text russian
Full content Buy
Back