Journals →  Цветные металлы →  2022 →  #8 →  Back

Редкие металлы, полупроводники
ArticleName Особенности растворения порошков металлического иридия в окислительных солянокислых средах
DOI 10.17580/tsm.2022.08.05
ArticleAuthor Белоусов О. В., Белоусова Н. В., Борисов Р. В.
ArticleAuthorData

Сибирский федеральный университет, Красноярск, Россия:

Н. В. Белоусова, заведующая кафедрой металлургии цветных металлов, профессор, докт. хим. наук, эл. почта: netmamba@mail.ru

 

Сибирский федеральный университет, Красноярск, Россия1 ; Институт химии и химической технологии Сибирского отделения РАН — обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск, Россия2:

О. В. Белоусов, профессор кафедры металлургии цветных металлов1, ведущий научный сотрудник лаборатории гидрометаллургических процессов2, докт. хим. наук, эл. почта: ov_bel@icct.ru
Р. В. Борисов, доцент кафедры обогащения полезных ископаемых1, научный сотрудник лаборатории гидрометаллургических процессов2, канд. хим. наук, эл. почта: roma_boris@list.ru

Abstract

Один из самых химически инертных металлов платиновой группы — иридий. Он чрезвычайно устойчив к действию многих реагентов, в том числе к растворам щелочей и минеральных кислот. Это, а также комплекс физических свойств иридия определяют сферы его практического применения. В статье показана возможность одностадийного растворения в солянокислых средах металлических порошков иридия различной дисперсности в присутствии пероксида водорода. Морфологию, фазовый и химический состав исследовали методами просвечивающей и сканирующей электронной микроскопии, рентгенофазового анализа, адсорбционными измерениями удельной поверхности и химического анализа. Применяли аффинированный (размер частиц 30–150 мкм), высокодисперсный (150–200 нм) и нанокристаллический (8–15 нм) иридий. При температурах 190–210 oC изучены кинетические особенности растворения иридия(0) с различной удельной поверхностью. Установлено, что процесс растворения всех образцов протекает в кинетическом режиме, а полученные экспериментальные данные хорошо описываются моделью сжимающегося ядра. Энергия активации растворения аффинированного, высокодисперсного и нанокристаллического иридия(0) в солянокислых растворах в присутствии пероксида водорода составляет 145, 108 и 88 кДж/моль соответственно. Таким образом, экспериментально доказано закономерное снижение значений энергии активации с уменьшением размеров частиц. Подтверждено, что иридий в растворах находится в виде хлоридных комплексов четырехвалентного иридия. Решена задача экологически безопасного перевода металлического иридия в удобные хлоридные формы для дальнейших процедур анализа, в аффинажном производстве и последующего синтеза комплексных соединений иридия.

Работа выполнена в рамках государственного задания Института химии и химической технологии СО РАН (проект 0287-2021-0014) с использованием оборудования Красноярского регионального центра коллективного пользования ФИЦ КНЦ СО РАН.

keywords Иридиевые порошки, хлорокомплексы иридия, растворение иридия, автоклавы, гидротермальные условия
References

1. Livingstone S. E. The chemistry of ruthenium, rhodium, palladium, osmium, iridium and platinum: Pergamon texts in inorganic chemistry. 1973. Vol. 25. 222 p.
2. Fujita K. I. Development and application of new iridium catalysts for efficient dehydrogenative reactions of organic molecules. Bulletin of the Chemical Society of Japan. 2019. Vol. 92, No. 2. pp. 344–351. DOI: 10.1246/bcsj.20180301.
3. Jang H., Lee J. Iridium oxide fabrication and application: A review. Journal of Energy Chemistry. 2020. Vol. 46. pp. 152–172. DOI: 10.1016/j.jechem.2019.10.026.
4. Karakovskaya K. I., Dorovskikh S. I., Vikulova E. S., Ilyin I. Y., Zherikova K. V. et al. Volatile iridium and platinum MOCVD precursors: Chemistry, thermal properties, materials and prospects for their application in medicine. Coatings. 2021. Vol. 11, No. 1. p. 78. DOI: 10.3390/coatings11010078.
5. Ohriner E. K. Processing of iridium and iridium alloys. Platinum Metals Review. 2008. Vol. 52, No. 3. p. 186. DOI: 10.1595/147106708X333827.
6. Nguyen T. H., Sonu C. H., Lee M. S. Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy. 2016. Vol. 164. pp. 71–77. DOI: 10.1016/j.hydromet.2016.05.014.
7. Sahu P., Jena M. S., Mandre N. R., Venugopal R. Platinum group elements mineralogy, beneficiation, and extraction practices – An overview. Mineral Processing and Extractive Metallurgy Review. 2020. Vol. 42, Iss. 8. pp. 521–534. DOI: 10.1080/08827508.2020.1795848.
8. Mpinga C. N., Eksteen J. J., Aldrich C., Dyer L. Direct leach approaches to Platinum Group Metal (PGM) ores and concentrates: A review. Minerals Engineering. 2015. No. 78. pp. 93–113. DOI: 10.1016/j.mineng.2015.04.015.
9. Ding Y., Zhang S., Liu B., Zheng H., Chang C. C. et al. Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conservation and Recycling. 2019. Vol. 141. pp. 284–298. DOI: 10.1016/j.resconrec.2018.10.041.
10. Lee J., Kim Y. Chemical dissolution of iridium powder using alkali fusion followed by high-temperature leaching. Materials Transactions. 2011. Vol. 52, Iss. 11. pp. 2067–2070. DOI: 10.2320/matertrans.M2011202.
11. Upadhyay A., Lee J.-C., Kim E., Kim M. S., Kim B. Su. et al. Leaching of platinum group metals (PGMs) from spent automotive catalyst using electrogenerated chlorine in HCl solution. Journal of Chemical Technology & Biotechnology. 2013. Vol. 88. pp. 1991–1999. DOI: 10.1002/jctb.4057.
12. Sun S., Jin C., He W., Li G., Zhu H. et al. A review on management of waste three-way catalysts and strategies for recovery of platinum group metals from them. Journal of Environmental Management. 2022. Vol. 305. p. 114383. DOI: 10.1016/j.jenvman.2021.114383.
13. Zaytsev P. V., Fomenko I. V., Chugaev L. V., Shneerson Ya. M. Pressure oxidation of double refractory raw materials in the presence of limestone. Tsvetnye Metally. 2015. No. 8. pp. 41–49. DOI: 10.17580/tsm.2015.08.05.
14. Batnasan A., Haga K., Shibayama A. Recovery of precious and base metals from waste printed circuit boards using a sequential leaching procedure. JOM. 2018. Vol. 70, No. 2. pp. 124–128. DOI: 10.1007/s11837-017-2694-y.
15. Liu G., Wu Y., Tang A., Li B. Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: A review. Hydrometallurgy. 2020. Vol. 197. p. 105460. DOI: 10.1016/j.hydromet.2020.105460.
16. Xingxiang F., Yunan Y., Lin T., Yongjia L., Sen Y. et al. Kinetics research on rhenium of the waste platinum-rhenium catalyst under pressure oxygen leaching. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 439, Iss. 2. p. 022009. DOI: 10.1088/1757-899X/439/2/022009.
17. Ubaldini S. Leaching kinetics of valuable metals. Metals. 2021. Vol. 11, No. 1. p. 173. DOI: 10.3390/met11010173.
18. Yang Y., Gao W., Xu B., Li Q., Jiang T. Study on oxygen pressure thiosulfate leaching of gold without the catalysis of copper and ammonia. Hydrometallurgy. 2019. Vol. 187. pp. 71–80. DOI: 10.1016/j.hydromet.2019.05.006.

19. Mohanty U. S., Kalliomäki T., Seisko S., Peng C., Rintala L. et al. Dissolution of copper and nickel from nickel-rich anode slimes under oxidized pressure leaching. Mineral Processing and Extractive Metallurgy Review. 2019. Vol. 130, Iss. 4. pp. 1–10. DOI: 10.1080/25726641.2019.1670008.
20. Rogozhnikov D. A., Shoppert A. A., Dizer O. A., Karimov K. A., Rusalev R. E. Leaching kinetics of sulfides from refractory gold concentrates by nitric acid. Metals. 2019. Vol. 9, Iss. 4. p. 465. DOI: 10.3390/met9040465.
21. Belousova N. V., Belousov O. V., Borisov R. V., Akimenko A. A. Autoclave dissolution of platinum metals in hydrochloric acid oxidizing media. Russian Journal of Non-Ferrous Metals. 2021. Vol. 62. pp. 668–674. DOI: 10.3103/S1067821221060043.
22. Hodgson A. P. J., Jarvis K. E., Grimes R. W., Marsden O. J. Advances in the development of a dissolution method for the attribution of iridium source materials. Journal of Radioanalytical and Nuclear Chemistry. 2017. Vol. 311. pp. 1193–1199. DOI: 10.1007/s10967-016-5151-4.
23. Borisov R. V., Belousov O. V., Dorokhova L. I., Zhizhaev A. M. Features of fine iridium powders dissolution in acidic media. Journal of Siberian Federal University. Chemistry. 2017. Vol. 3, No. 10. pp. 325–332. DOI: 10.17516/1998-2836-0029.
24. Belousova N. V., Belousov O. V., Borisov R. V., Grizan N. V. Specific features of dissolution of metallic rhodium in acid oxidative media under hydrothermal conditions. Russian Journal of Applied Chemistry. 2019. Vol. 92, No. 8. pp. 1102–1106. DOI: 10.1134/S107042721908007X.
25. Borisov R. V., Belousov O. V., Zhizhaev A. M., Kirik S. D., Mikhlin Y. L. Characterizations of metallic iridium nanoparticles formed under hydrothermal conditions. Inorganic Materials. 2022. Vol. 58, Iss. 2. pp. 215–222. DOI: 10.1134/S0020168522020030.
26. Belousov O. V., Belousova N. V., Sirotina A. V., Solovyov L. A., Zhyzhaev A. M. et al. Formation of Bimetallic Au – Pd and Au – Pt nanoparticles under hydrothermal conditions and microwave irradiation. Langmuir. 2011. Vol. 27, Iss. 18. pp. 11697–11703.
27. Akimenko A. A., Belousov O. V., Borisov R. V., Grabchak E. F. Study of chemical stability of titanium in model hydrochloric acid solutions of refining production. Tsvetnye Metally. 2021. No. 9. pp. 46–52. DOI: 10.17580/tsm.2021.09.04.
28. Belousov O. V., Belousova N. V., Borisov R. V., Ryumin A. I. Extraction of trace elements from platinum group metal concentrates in hydrothermal conditions. Tsvetnye Metally. 2021. No. 6. pp. 23–30. DOI: 10.17580/tsm.2021.06.03.
29. Levenspiel O. Chemical reaction engineering. 2nd ed. N.Y. : John Wiley & Sons, 1972.
30. Hidalgoa T., Kuharb L., Beinlicha A., Putnisa A. Kinetics and mineralogical analysis of copper dissolution from a bornite/chalcopyrite composite sample in ferric-chloride and methanesulfonic-acid solutions. Hydrometallurgy. 2019. Vol. 188. pp. 140–156. DOI: 10.1016/j.hydromet.2019.06.009.
31. Li M., Wei Ch., Qiu Sh., Zhou X., Li C. Kinetics of vanadium dissolution from black shale in pressure acid leaching. Hydrometallurgy. 2010. Vol. 104, Iss. 2. pp. 193–200. DOI: 10.1016/j.hydromet.2010.06.001.
32. Ju Zh.-J., Wang Ch.-Y., Yin F. Dissolution kinetics of vanadium from black shale by activated sulfuric acid leaching in atmosphere pressure. International Journal of Mineral Processing. 2015. Vol. 138. pp. 1–5. DOI: 10.1016/j.minpro.2015.03.005.
33. Fine D. A. Studies of the iridium(III) and (IV) — chloride system in acid solution. Journal of Inorganic and Nuclear Chemistry. 1970. Vol. 32, Iss. 8. pp. 2731–2742. DOI: 10.1016/0022-1902(70)80323-2.

Language of full-text russian
Full content Buy
Back