Journals →  Цветные металлы →  2022 →  #8 →  Back

ArticleName Влияние химического и гранулометрического состава кварц-лейкоксенового концентрата на его переработку в тетрахлорид титана в реакторах кипящего слоя
DOI 10.17580/tsm.2022.08.06
ArticleAuthor Занавескин К. Л.
ArticleAuthorData

Институт нефтехимического синтеза им. А. В. Топчиева Российской академии наук (ИНХС РАН), Москва, Россия:

К. Л. Занавескин, старший научный сотрудник, канд. хим. наук, эл. почта: zakon82@mail.ru

Abstract

Представлены результаты исследования хлорирования разных фракций кварц-лейкоксенового концентрата Ярегского месторождения. Выполнены комплексные взаимодополняющие работы по изучению изменения химического и минерального состава зерен лейкоксена, происходящего в процессе их хлорирования при температуре 850 oC и 5-кратном мольном избытке углерода. Установлено, что в условиях проведения процесса примесь кварца инертна к воздействию хлора, хлорирование алюмосиликатов протекает не полностью. Хлорирование зерен лейкоксена проходит по модели сжимающегося ядра частицы постоянного размера. В процессе хлорирования реагирующее ядро уменьшается, оставляя твердый инертный слой, который преимущественно состоит из кварца. Этот слой препятствует непосредственному контакту частиц углерода с поверхностью TiO2, расположенной внутри зерен. Реакция хлорирования TiO2 протекает через образование газообразных интермедиатов (предположительно, атомов хлора), образующихся на поверхности углерода. Газовые реагенты к поверхности TiO2 внутри частиц поступают посредством их диффузии через поры и каналы инертного слоя кварца. Атомы хлора вступают в реакции рекомбинации, что приводит к снижению их концентрации при прохождении через слой кварца. Достигнув поверхности реагирующего ядра внутри зерен лейкоксена, атомы хлора вступают во взаимодействие с TiO2. По мере увеличения толщины слоя кварца степень рекомбинации атомов хлора растет, скорость реакции хлорирования TiO2 снижается. При достижении критической толщины слоя кварца, равной 55 мкм, атомы хлора практически исчезают и процесс хлорирования TiO2 останавливается. По этой причине диоксид титана во фракциях концентрата, зерна которых крупнее 110 мкм, хлорируется не полностью. Переработка концентрата естественной крупности зерен позволяет достичь извлечения титана на уровне 80 %. Измельчение зерен концентрата приводит к высоким потерям TiO2 с пылевидными фракциями и не может применяться в качестве стадии подготовки концентрата к хлорированию. Для создания промышленного процесса получения тетрахлорида титана в реакторах кипящего слоя необходимо разработать способ, позволяющий повысить извлечение TiO2 из концентрата.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-29-24187 мк.

keywords Ярегское месторождение, хлорирование, тетрахлорид титана, кипящий слой, лейкоксен, кварц-лейкоксеновый концентрат, рутил, кварц, алюмосиликат
References

1. Leontyev L. I. Prospects for the development of the titanium potential of the Yaregskoye deposit. Razvedka i okhrana nedr. 2021. No. 8. pp. 56–60.
2. Stanawey K. J. Overview of titanium dioxide feedstocks. Mining Engineering. 1994. Vol. 46. pp. 1367–1370.
3. Perovskiy I. A., Burtsev I. N., Ponoryadov A. V., Somorokov A. A. Ammonium fluoride roasting and water leaching of leucoxene concentrate to produce a high grade titanium dioxide resource (of the Yaregskoye deposit, Timan, Russia). Hydrometallurgy. 2022. Vol. 210. 105858.
4. Zanaveskin К. L., Maslennikov А. N., Zanaveskina S. М., Dmitriev G. S. The Yaregskoye deposit leucoxene processing by means of autoclave leaching. Obogashchenie Rud. 2016. No. 6. pp. 14–20. DOI: 10.17680/or.2016.06.03.
5. Zanaveskin К. L., Maslennikov А. N., Dmitriev G. S., Zanaveskin L. N. Autoclave processing of quartz-leucoxene concentrate (Yaregskoye deposit). Tsvetnye Metally. 2016. No. 3. pp. 49–56. DOI: 10.17580/tsm.2016.03.08.
6. Nikolaev А. А., Nikolaev А. V., Kirpichev D. Е. Studies of the separation of titanium and silicon oxides during plasma-arc melting of quartz-leucoxene concentrate. Fizika i khimiya obrabotki materialov. 2021. No. 5. pp. 30–36.
7. Nikolaev A. A., Kirpichyov D. E., Nikolaev A. V. The energetic structure of plasma arc anode under reduction melting of quartz-leucoxene concentrate. Inorganic materials: applied research. 2019. Vol. 10, No. 3. pp. 560–565.
8. Kuzin Е. N., Nosova Т. I., Lyubushkina Т. G. Integrated pyro- and hydrometallurgical technology for processing quartz-leucoxene concentrate. Uspekhi v khimicheskoy tekhnologii. 2021. Vol. 35, No. 14. pp. 50–52.
9. Perovskiy I. А. Synthesis of titanosilicates from leucoxene concentrate. Proceedings of the XII International School of Geosciences named after Professor L. L. Perchuk (ISES-2020). Materialy Shkoly. 2020. p. 41.
10. Zanaveskin K. L., Terekhov A. V., Zanaveskin L. N., Lukashev R. V., Maslennikov A. N. et al. Preparation of porous materials from a leucoxene concentrate. Inorganic Materials. 2016. Vol. 52, No. 8. pp. 796–801.
11. Zanaveskin K. L., Lukashev R. V., Makhin M. N., Zanaveskin L. N. Hydrothermal preparation of porous materials from a rutile-quartz concentrate. Ceramics International. 2014. Vol. 40, Iss. 10. pp. 16577–16580.
12. Garmata V. А., Petrunko А. N., Galitskiy N. V., Olesov Yu. G., Sandler R. А. Titanium. Moscow : Metallurgiya, 1983. 530 p.
13. Hudon G., Filippou D. Chemical processes for the production of titanium tetrachloride as precursor of titanium metal. Extractive Metallurgy of Titanium. Chapter 4. 2020. pp. 47–62.
14. Bordbar H., Yousefi A. A., Abedini H. Production of titanium tetrachloride (TiCl4) from titanium ores : A review. Polyolefins Journal. 2017. Vol. 4, No. 2. pp. 149–173.
15. On the state and use of mineral resources of the Russian Federation in 2019. Chief editor E. A. Kiselev. Moscow : VIMS, 2020. 492 p.
16. Zanaveskin K. L., Meshalkin V. P. Chlorination of Quartz-Leucoxene Concentrate of Yarega Field. Metallurgical and Materials Transactions B. 2020. Vol 51. pp. 906–915.
17. Zanaveskin К. L., Maslennikov А. N., Makhin M. N., Zanaveskin L. N. Special features of the Yaregskoye deposit quartz-leucoxene rougher concentrate chemical and mineral composition. Obogashchenie Rud. 2015. No. 5. pp. 20–27. DOI: 10.17580/or.2015.05.05.
18. Chen J., Chang F., Chang C. Chlorination kinetics of silicon dioxide in the presence of carbon. Industrial & Engineering Chemistry Research. 1990. No. 29. pp. 778–783.
19. Levenspiel О. Chemical reaction engineering. Moscow : Khimiya, 1969. 620 p.
20. Smith K. A., Riemer S. C., Iwasaki I. Carbochlorination of aluminum from non-bauxite sources. JOM. 1982. Vol. 34. pp. 59–62.
21. Grob B., Richarz W. Chlorination of alumina in kaolinitic clay. Metallurgical Transactions B. 1984. Vol. 15. pp. 529–533.
22. Zanaveskin K. L., Dmitriev G. S., Zanaveskin L. N., Maslennikov A. N., Zanaveskina S. M. et al. Leaching SiO2 and Al2O3 impurities from leucoxene from Yaregskoe deposite by sodium hydroxide solution. Theoretical Foundations of Chemical Engineering. 2019. No. 53. pp. 669–679.
23. Zanaveskin К. L., Maslennikov А. N., Makhin M. N., Zanaveskin L. N. Influence of granulometric composition on leucoxene concentrate processing with titanium tetrachloride obtaining (Yaregskoye deposit). Tsvetnye Metally. 2016. No. 10. pp. 79–85. DOI: 10.17580/tsm.2016.10.11.
24. Zanaveskin К. L., Maslennikov А. N., Zanaveskina S. М., Vlasenko V. I. Reaction ability of titanium-bearing raw materials during the titanium tetrachloride obtaining. Tsvetnye Metally. 2017. No. 4. pp. 47–53. DOI: 10.17580/tsm.2017.04.07.
25. Barin I., Schuler W. On the kinetics of the chlorination of titanium dioxide in the presence of solid carbon. Metallurgical and Materials Transactions B. 1980. No. 11. pp. 199–207.
26. Amorebieta V. T., Colussi A. J. Direct study of the catalytic decomposition of chlorine and chloromethanes over carbon films. International Journal of Chemical Kinetics. 1985. No. 17. pp. 849–858.
27. Pasquevich D. M., Gamboa J. J., Caneiro A. On the role of carbon in the carbochlorination of refractory oxides. Thermochimica Acta. 1992. No. 209. pp. 209–222.
28. Ogryzlo E. A. Halogen atom reactions: I. The electrical discharge as a source of halogen atoms. Canadian Journal of Chemistry. 1961. No. 39. pp. 2556–2562.
29. Kota G. P., Coburn J. W., Graves D. B. The recombination of chlorine atoms at surfaces. Journal of Vacuum Science and Technology. 1998. No. 16. pp. 270–277.
30. Ma T., List T., Arora P., Donnelly V. M. Recombination coefficients for Cl on plasma-conditioned yttrium oxide chamber wall surfaces. Journal of Applied Physics. 2019. No. 125. 023301.
31. Sitanov D. V., Pivovarenok S. A. Kinetics of atomic recombination on silicon samples in chlorine plasma. Plasma Physics Reports. 2018. Vol. 44, No. 8. pp. 713–722.
32. Karapetyants М. Kh., Karapetyants М. L. Basic thermodynamic constants of inorganic and organic substances. Moscow : Khimiya, 1968. 472 p.
33. Andrade-Gamboa J., Pasquevich D. M. A model for the role of carbon on carbochlorination of TiO2. Metallurgical and Materials Transactions B. 2000. No. 31. pp. 1439–1446.
34. Pasquevich D. M., Amorebieta V. T. Mass spectrometric study of volatile products during the carbochlorination of zirconia. Ber. Bunseiiges. Phys. Chem. 1992. Vol. 96, No. 4. pp. 530–533.
35. Jena P. K., Brocchi E. D., Reis M. L. Kinetics of chlorination of zirconia in mixture with petroleum coke by chlorine gas. Metallurgical and Materials Transactions B. 1999. No. 30. pp. 375–381.
36. Ojeda M. W., Rivarola J. B., Quiroga O. Study on chlorination of molybdenum trioxide mixed with carbon black. Minerals Engineering. 2002. No. 15, Iss. 5. pp. 585–591.
37. Pomiro F. J., Fouga G. G., Gaviría J. P., Bohé A. E. Study of the reaction stages and kinetics of the europium oxide carbochlorination. Metallurgical and Materials Transactions B. 2015. No. 46. pp. 304–315.

38. González J. A., Del M. C., Ruiz C., Rivarola J. B., Pasquevich D. M. Effects of heating in air and chlorine atmosphere on the crystalline structure of pure Ta2 a O5 or mixed with carbon. Journal of Materials Science. 1998. No. 33. pp. 4173–4180.
39. Yang F., Hlavácek V. Carbochlorination of tantalum and niobium oxides: Thermodynamic simulation and kinetic modeling. Aiche Journal. 1999. No. 45. pp. 581–589.
40. Esquivel M. R., Bohé A. E., Pasquevich D. M. Carbochlorination of cerium dioxide. Mineral Processing and Extractive Metallurgy. 2002. Vol. 111, Iss. 3. pp. 149–155.
41. Yang F., Hlavácek V. Carbochlorination of tantalum and niobium oxides: Thermodynamic simulation and kinetic modeling. Aiche Journal. 1999. No. 45. pp. 581–589.
42. Ivanov V. Chlorination in salt melt in the technology of production of poly crystalline silicon. Elektronika: nauka, tekhnologiya, biznes. 2019. No. 6. pp. 154–160.
43. Morris A. J., Jensen R. F. Fluidized-bed chlorination rates of australian rutile. Metallurgical and Materials Transactions B. 1976. No. 7. pp. 89–93.
44. Yang F., Hlavácek V. Carbochlorination kinetics of titanium dioxide with carbon and carbon monoxide as reluctant. Metallurgical and Materials Transactions B. 1998. No. 29. pp. 1297–1307.
45. Sohn H. Y., Zhou L. The kinetics of carbochlorination of titania slag. Canadian Journal of Chemical Engineering. 1998. No. 76. pp. 1078–1082.
46. Niu L., Ni P., Zhang T., Lv G., Zhou A. et al. Mechanism of fluidized chlorina tion reaction of Kenya natural rutile ore. Rare Metals. 2014. No. 33. pp. 485–492.
47. El-Sadek M. H., Fouad O. F., Morsi M. B., El-Barawy K. A. Controlling conditions of fluidized bed chlorination of upgraded titania slag. Transactions of the Indian Institute of Metals. 2018. No. 72. pp. 423–427.
48. McCoy D., Coetzee B., Keegal M., Bender E. Titanium feedstocks – opaque quality requirements. Proceedings Eighth International Heavy Minerals Conference (The Australasian Institute of Mining and Metallurgy, Melbourne). 2011. pp. 197–203.
49. Moodley S., Kale A., Bessinger D. J., Küçükkaragöz C. S., Eric R. H. Fluidi zation behaviour of various titania feedstocks. Journal of The South African Institute of Mining and Metallurgy. 2012. No. 112. pp. 467–471.
50. Zanaveskin К. L., Zanaveskina S. М., Maslennikov А. N., Politova E. D., Vlasenko V. I. et al. Activation of quartz-leucoxene concentrate for processing into titanium tetrachloride. Zhurnal prikladnoy khimii. 2016. Vol. 89, No. 11. pp. 1361–1367.

Language of full-text russian
Full content Buy
Back