ArticleName |
Copper catalysts Cu – (Zr + Ce)O2 – Al2O3 as carrier in the process of ethanol conversion: effect of catalyst composition and ethanol concentration |
ArticleAuthorData |
Peoples’ Friendship University of Russia, Moscow, Russia:
A. I. Zhukova, Associate Professor at the Department of Physical and Colloid Chemistry, Candidate of Chemical Sciences, e-mail: pylinina-ai@rudn.ru S. G. Chuklina, Junior Researcher at the Department of Physical and Colloid Chemistry, Candidate of Chemical Sciences, e-mail: sofyaogan@gmail.com Yu. A. Fionov, 2nd Year Master’s Student, Intern Researcher at the Department of Physical and Colloid Chemistry, e-mail: fionovyuri@gmail.com D. A. Osaulenko, 1st Year Doctoral Student, Intern Researcher at the Department of Physical and Colloid Chemistry, e-mail: dinaosa@yandex.ru |
References |
1. Sagar G. V. Dispersion and reactivity of copper catalysts supported on Al2O3 – ZrO2. Journal of Physical Chemistry B. 2006. Vol. 28, Iss. 110. pp. 13881–13888. 2. Chang F.-W., Kuo W.-Y., Lee K.-C. Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation. Applied Catalysis A: General. 2003. Vol. 246, Iss. 2. pp. 253–264. 3. Qing-Nan Wang, Lei Shi, An-Hui Lu. Highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde. Chem. Cat. Chem. 2015. Vol. 7. pp. 2846–2852. 4. Alikin E. A., Bochkarev S. Yu., Denisov S. P., Danchenko N. M., Rychkov V. N. et al. Developing a thermally stable system Аl2О3 – Сe0,75Zr0,25O2 for use in three-way automobile catalysts. Kataliz v promyshlennosti. 2012. No. 2. pp. 25–34. 5. Chang-Yi L. I., Wang J., Tsai Sh., Wang J., Tsai T. Catalysis of CexZr1–xO2 for di-iso-propyl-ether hydration. Journal of Rare Earths. 2014. Vol. 32, Iss. 9. pp. 860–866. 6. Chen H., Ye Z., Cui X., Shi J., Yan D. A novel mesostructured alumina – ceria – zirconia tri-component nanocomposite with high thermal stability and its three-way catalysis. Microporous and Mesoporous Materials. 2011. Vol. 143, Iss. 2. pp. 368–374. 7. Liotta L. F., Longo A., Pantaleo G., Di Carlo G., Martorana A. et al. Alumina supported Pt(1%)/Ce0.6Zr0.4O2 monolith: Remarkable stabilization of ceria – zirconia solution towards CeAlO3 formation operated by Pt under redox conditions. Applied Catalysis B: Environmental. 2009. Vol. 90. pp. 470–477. 8. Pylinina A., Chuklina S., Ahmedova L., Podzorova L. Design of nanomaterials based on complex Al – Zr – Ce-oxides for bio ethanol transformations. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management – SGEM. Conference proceedings. 2017. Vol. 17, No. 61. pp. 105–110. 9. Zhukova A. I., Chuklina S. G., Maslenkova S. A. Study of Cu modified Zr and Al mixed oxides in ethanol conversion: The structure-catalytic activity relationship. Catalysis Today. 2021. Vol. 379. pp. 159–165. 10. Hanukovich S., Dang A., Christopher P. Influence of metal oxide support acid sites on Cu-catalyzed nonoxidative dehydrogenation of ethanol to acetaldehyde. ACS Catalysis. 2019. Vol. 9, Iss. 4. pp. 3537–3550. 11. Qing-Nan Wang, Lei Shi, Wei Li, Wen-Cui Li, Rui Si et al. Cu supported on thin carbon layer-coated porous SiO2 for efficient ethanol dehydrogenation. Catalysis Science & Technology. 2018. Vol. 8. pp. 472–479. 12. Zhang H., Tan H.-R., Jaenicke S., Chuah G.-K. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Journal of Catalysis. 2020. Vol. 389. pp. 19–28. 13. Pampararo G., Garbarino G., Riani P., Garcíae M. V., Escribano V. S. A study of ethanol dehydrogenation to acetaldehyde over supported copper catalysts: Catalytic activity, deactivation and regeneration. Applied Catalysis A: General. 2020. Vol. 602. pp. 117–129. 14. Podzorova L. I., Chuklina S. G., Ilyicheva A. A., Konovalov A. A., Penkova O. I. et al. Frame catalysts of the Al2O3 – ZrO2 – CeO2 system. Perspektivnye materialy. 2018. No. 3. pp. 65–71. 15. Podzorova L. I., Ilyicheva A. A., Mikhaylina N. A., Shevchenko V. Ya., Shvorneva L. I. Phases forming in the ZrO2 – Al2O3 – CeO2 system in various conditions. Neorganicheskie materialy. 2002. Vol. 38, No. 12. pp. 51–57. 16. Ilyichev A. N., Firsova A. A., Korchak V. N. Understanding the reaction behind oxidation of CO in excess H2 on CuO/CeO2 catalysts using EPR and TPD methods. Kinetics and Catalysis. 2006. Vol. 47, No. 4. pp. 602–609. 17. Shinkarenko V. G., Anufrienko V. F. A spectroscopic study of bivalent copper and its state in a copper-magnesium oxide catalyst. Theoretical and Experimental Chemistry. 1976. Vol. 2, No. 2. pp. 270–274. 18. Soria J., Conesa J. C., Martinez-Arias A., Coronado J. M. ESR study of the clustering of Cu ions on the ceria surface in impregnated CuO/CeO2. Solid State Ionics. 1993. Vol. 63–65. pp. 755–761. 19. Ribeiro M. C., Jacobs G., Davis B. H., Mattos L. V., Noronha F. B. Ethanol steam reforming: higher dehydrogenation selectivities observed by tuning oxygen-mobility and acid/base properties with Mn in CeO2·MnOx·SiO2 catalysts. Topics in Catalysis. 2013. Vol. 56. pp. 1634–1643. 20. Morales M. V., Asedegbega-Nieto E., Bachiller-Baeza B., Guerrero-Ruiz A. Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon. 2016. Vol. 102. pp. 426–436. |