Journals →  Tsvetnye Metally →  2022 →  #10 →  Back

FUNCTIONAL MATERIALS
ArticleName Texture formation in biomedical superelastic Ti – Zr – Nb alloys during rolling and subsequent heat treatment
DOI 10.17580/tsm.2022.10.11
ArticleAuthor Zaripova M. M., Isaenkova M. G., Fesenko V. A., Osintsev A. V.
ArticleAuthorData

National Research Nuclear University MEPhI, Moscow, Russia:

Zaripova M. M., Postgraduate Student, Engineer, e-mail: MMZaripova@mephi.ru
Isaenkova M. G., Professor, Doctor of Physical and Mathematical Sciences

Fesenko V. A., Lead Engineer
Osintsev A. V., Acting Head of the Department, Candidate of Technical Sciences

Abstract

Currently, low-modulus biocompatible Ti – Nb – Zr alloys are considered promising for medical applications. Superelasticity is a property that is mainly governed by the crystallographic direction in single crystals, i.e. by the predominant orientation of grains in polycrystalline objects. In order to control the crystallographic texture in products (such as foils), one should understand how it forms at various stages of thermomechanical processing. This paper compares the following alloys in terms of their crystallographic texture and how it forms: Ti –18Zr – 15Nb (18-15), Ti – 6Zr – 22Nb (22-6), Ti – 22Nb – (1–1.5)O (1O and 1.5O) (at.%). The composition of an alloy influences the stability of the initial β-phase, which tends to decrease with an increase in the concentration of Zr, which replaces Nb. A decreasing stability triggers martensitic transformations during rolling resulting in the formation of a weak blurry texture {112}<011>, as can be observed during deformation of alloy 18-15. Plastic deformation of a stable β-phase leads to the formation of a sharp twocomponent texture typical of BCC alloys: {110}<001> and {112}<011>, which develops during the rolling of alloys with oxygen and 22-6. Recrystallization of rolled foils (ε = 92%) at 650 оC for 0.5 h leads to sharpening of the texture components in the case of samples with a sharp deformation texture (22-6, 1O, 1 .5O) and to a change in texture in the case of samples with a weak deformation texture (18-15). Cyclic tensile tests conducted in three different directions revealed the presence of anisotropy in foils of all compositions. However, alloy 18-15 has the lowest anisotropy. An increase in the Zr concentration contributes to maximum reversible strain in the process of realizing superelasticity at room temperature.

This research was funded by the Ministry of Science and Higher Education of the Russian Federation; Agreement No. 075-15-2021-1352.

keywords Martensitic transformations, shape memory effect, superelasticity, crystallographic texture, Ti – Nb – Zr, biomedical alloy, rolling, heat treatment of foils.
References

1. Yoneyama T., Miyazaki S. Shape memory alloys for biomedical applications. England : Woodhead Publishing, 2008. 337 p.
2. Nordberg G. F., Gerhardsson L., Broberg K., Mumtaz M. Interactions in metal toxicology. Handbook on the Toxicology of Metals. 2007. pp. 117–145.
3. Biocompatibility and tissue reaction to biomaterials. Craig’s Restorative Dental Materials. 2012. pp. 109–133.
4. Kоster R., Vieluf D., Sommerauer M., Kiehn M. et al. Nickel and molybdenum contact allergies in patients with coronary instent restenosis. Lancet. 2000. Vol. 356, No. 9245. pp. 1895–1897.
5. Morgan E. F., Unnikrisnan G. U., Hussein A. I. Annual review of biomedical engineering bone mechanical properties in healthy and diseased states. Annual Review of Biomedical Engineering. 2018. pp. 119–143.
6. Kim K. M., Zain Y. A., Yamamoto A., Mansour A. T. et al. Synthesis and characterization of a Ti – Zr-based alloy with ultralow young’s modulus and excellent biocompatibility. Advanced Engineering Materials. 2021. Vol. 24.
7. Wang X., Zhang L., Guo Z., Jiang Y. et al. Study of low-modulus biomedical β Ti – Nb – Zr alloys based on single-crystal elastic constants modeling. Journal of the Mechanical Behavior of Biomedical Materials. 2016. Vol. 62. pp. 310–318.
8. Zhang J., Sun F., Hao Y. L., Gozdecki N. Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti – Nb – Zr alloy. Materials Science and Engineering A. 2013. Vol. 563. pp. 78–85.
9. Miyazaki S., Kim H. Y., Hosoda H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Ibid. 2006. Vol. 438-440, No. SPEC. ISS. pp. 18–24.
10. Ramarolahy A., Castany P., Prima P., Laheurte P. et al. Microstructure and mechanical behavior of superelastic Ti – 24Nb – 0.5O and Ti – 24Nb – 0.5N biomedical alloys. Journal of the Mechanical Behavior of Biomedical Materials. 2012. Vol. 9 pp. 83–90.
11. Zaripova M. M., Perlovich Yu. A., Osintsev A. V. et al. Effect of crystallographic texture and phase composition on the superelasticity of Ti – Nb alloy foils. Chelyabinskiy Fiziko-Matematicheskiy Zhurnal. 2019. Vol. 4, No. 1. pp. 94–107.
12. Kim H. Y., Miyazaki S. Several issues in the development of Ti – Nb-based shape memory alloys. Shape Memory and Superelasticity. 2016. Vol. 2, No. 4. pp. 380–390.
13. Cai S., Daymond M., Ren Y., Schaffer J. et al. Evolution of lattice strain and phase transformation of β III Ti alloy during room temperature cyclic tension. Acta Materialia. 2013. Vol. 61, No. 18. pp. 6830–6842.
14. Inamura T., Shimizu R., Kim H. Y., Miyazaki S. et al. Optimum rolling ratio for obtaining {001}<110 > recrystallization texture in Ti – Nb – Al biomedical shape memory alloy. Materials Science and Engineering: C. 2016. Vol. 61. pp. 499–505.
15. Zaripova M., Fesenko V., Krymskaya O., Kozlov I. et al. Change in the crystallographic texture of the martensitic phase in superelastic Ti – Zr – Nb alloys with increasing tensile strain. Shape Memory and Superelasticity. DOI: 10.1007/s840830-022-00383-0.
16. Fu J., Yamamoto A., Kim H. Y., Hosoda H. et al. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomaterialia. 2015. Vol. 17. pp. 56–67.
17. Isaenkova M. G., Perlovich M. G., Fesenko V. A., Zaripova M. M. Orientation dependences of the functional properties of shape memory and superelasticity alloys. Chelyabinskiy Fiziko-Matematicheskiy Zhurnal. 2019. Vol. 4, No. 2. pp. 221–240.
18. Inamura T., Shimizu R., Kim H. Y., Miyazaki S. et al. Optimum rolling ratio for obtaining {001}<110 > recrystallization texture in Ti – Nb – Al biomedical shape memory alloy. Materials Science and Engineering: C. 2016. Vol. 61 pp. 499–505.
19. Kim H. Y., Sasaki T., Okutsu K., Kim J. I. et al. Texture and shape memory behavior of Ti – 22Nb – 6Ta alloy. Acta Materialia. 2006. Vol. 54, No. 2. pp. 423–433.
20. Tobe H., Kim H. Y., Miyazaki S. Effect of Nb content on deformation textures and mechanical properties of Ti – 18Zr – Nb biomedical alloys. Materials Transactions. 2009. Vol. 50, No. 12. pp. 2721–2725.
21. Kim J. I., Kim H. Y., Inamura T., Hosoda H. et al. Effect of annealing temperature on microstructure and shape memory characteristics of Ti – 22Nb – 6Zr(at%) biomedical alloy. Materials Transactions. 2006. Vol. 47, No. 3. pp. 505–512.
22. Kim H. Y., Jie F., Tobe H., Kim J. I. Crystal structure, transformation strain, and superelastic property of Ti – Nb – Zr and Ti – Nb – Ta alloys. Shape Memory and Superelasticity. 2015. Vol. 1, No. 2. pp. 107–116.
23. Tahara M., Kanaya T., Kim H. Y., Inamura T., Hosoda H. et al. Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti – Nb – O alloy. Acta Materialia. 2014. Vol. 80. pp. 317–326.
24. Dubinskiy S. M., Prokoshkin S., Brailovski V., Korotitskiy A. et al. Structure formation during thermomechanical processing of Ti – Nb – (Zr, Ta) alloys and the manifestation of the shape-memory effect. Physics of Metals and Metallography. 2011. Vol. 112, No. 5. pp. 503–516.
25. Sheremetyev V., Brailovski V., Prokoshkin S., Inaekyan K. et al. Functional fatigue behavior of superelastic beta Ti – 22Nb – 6Zr(at%) alloy for load-bearing biomedical applications. Materials Science and Engineering: C. 2016. Vol. 58. pp. 935–944.
26. Zaripova M. M., Isaenkova M., Fesenko V., Osintsev A. The influence of the crystallographic texture and phase composition of Ti – Nb – Zr alloys with shape memory and superelasticity on their functional properties. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1121, No. 1. 12032.
27. Isaenkova M., Perlovich Y., Fesenko V. Modern methods of experimental construction of texture complete direct pole figures by using X-ray data. Ibid. 2016. Vol. 130, No. 1. 12055.
28. Isaenkova M., Perlovich Yu., Fesenko V., Babich Y. Features of structure formation in the low modulus quasi-single crystal from Zr – 25%Nb alloy at cold rolling. AIP Conference Proceedings. 2018. Vol. 1960, Iss. 1.040008.
29. Sutton M. A., Orteu J. J., Schreier H. W. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, 2009. 321 p.
30. The digital image correlation system VIC-3D. Available at: https://www.correlatedsolutions.com/vic-3d/ (Accessed: 13.07.2022).
31. Pecharsky V. K., Zavalij P. Y. Fundamentals of powder diffraction and structural characterization of Materials. Springer, 2008. 744 p.
32. Kim H. Y., Miyazaki S. Chapter 4. Thermomechanical treatment and microstructure control. Ni-free Ti-based shape memory alloys. Ed. Kim H. Y., Miyazaki S. Butterworth-Heinemann. 2018. pp. 111–145.
33. Kim K. M., Kim H. Y., Miyazaki S. Effect of Zr content on phase stability, deformation behavior, and young’s modulus in Ti – Nb – Zr alloys. Materials (Basel). 2020. Vol. 13, No. 2. pp. 1–14.
34. Fu J., Kim H. Y., Miyazaki S. Effect of annealing temperature on microstructure and superelastic properties of a Ti – 18Zr – 4.5Nb – 3Sn – 2Mo alloy. Journal of the Mechanical Behavior of Biomedical Materials. 2017. Vol. 65. pp. 716–723.
35. Ijaz M. F., Kim H. Y., Hosoda H., Miyazaki S. Superelastic properties of biomedical (Ti – Zr) – Mo – Sn alloys. Materials Science and Engineering: C. 2015. Vol. 48. pp. 11–20.
36. Perlovich Yu. A., Isaenkova M. G. The structural inhomogeneity of textured metallic materials. Moscow : NIYaU MIFI, 2015. 398 p.
37. Fesenko V., Perlovich Y., Isaenkova M. The increased shape memory effect in rolled Ti – 48%Ni – 2%Fe single crystals. Materials Today: Proceedings. 2015. Vol. 2. pp. S751–S754.

Language of full-text russian
Full content Buy
Back