Journals →  Obogashchenie Rud →  2022 →  #5 →  Back

ArticleName Principles of pyrometallurgical processing of quartz-leucoxene concentrates with the formation of a pseudobrookite phase. Part 2. Phase transformations
DOI 10.17580/or.2022.05.04
ArticleAuthor Kuzin E. N., Mokrushin I. G., Kruchinina N. E.

Mendeleev University of Chemical Technology (Moscow, Russia):

Kuzin E. N., Associate Professor, Candidate of Engineering Sciences,
Kruchinina N. E., Dean, Doctor of Engineering Sciences, Professor,

Perm State National Research University (Perm, Russia):

Mokrushin I. G., Associate Professor, Candidate of Сhemical Sciences


Quartz-leucoxene ore and its processing concentrates are valuable titanium-containing raw materials, however a comprehensive processing technology for the ore is yet to be developed. This paper studies the high-temperature processes occurring in a system containing quartz-leucoxene concentrate with an iron-containing additive. It has been established that, depending on the atmosphere of the pyrometallurgical processing and the type of the iron-containing additive, phases of ilmenite (in an inert atmosphere) or pseudobrookite (in an oxidizing atmosphere) may be obtained. The possibility of using heat treatment and forging scale (a common large-tonnage metallurgical production waste) as an iron-containing additive has been studied. It has been established that pseudobrookite will be the final product. For all concentrate/iron-containing additive systems studied, depending on the thermal effects, the possibility of intermediate reduction/oxidation reactions for iron oxides and of the formation of Fe2TiO4 intermediate phases (followed by their transition to the pseudobrookite phase) was identified. The minimum triggering temperatures for the conversion process of quartz-leucoxene concentrate Fe2TiO5 and FeTiO3 have been established, as well as the main thermal effects, mass losses, and melt crystallization parameters, which allows optimizing the conditions for pyrometallurgical conversion. The data obtained enables effective process scaling. It has been established that impurity components in the concentrate (up to 7–9 wt% on average) enter into intrasystem reactions with the formation of calcium titanates (sphene CaSiTiO5) and magnesium (MgTiO3, MgTi2O5, Mg2TiO2).
This is a continuation of the article titled «Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrates with the formation of a pseudobrookite phase» («Obogashchenie Rud», 2021, No. 3).

keywords Thermogravimetric analysis, differential scanning calorimetry, quartz-leucoxene concentrate, pseudobrookite, impurity components

1. Sadykhov G. B., Zablotskaya Yu. V., Anisonyan K. G., Kop'ev D. Yu., Olyunina T. V. Extraction of high-quality titanium raw materials from leucoxene concentrates of the Yarega deposit. Metally. 2018. No. 6. pp. 3–8.

2. Mashkovtsev G. A., Bykhovsky L. Z., Remizova L. I., Chebotareva O. S. On the supply of the russian industry with titanium raw materials. Mineralnye Resursy Rossii. Ekonomika i Upravlenie. 2016. No. 5. pp. 9–15.
3. Fossil energy: Selected entries from the Encyclopedia of sustainability science and technology. Ed. R. Malhotra. New York: Springer-Verlag, 2013. 634 p.
4. Chachula F., Liu Q. Upgrading a rutile concentrate produced from Athabasca oil sands tailings. Fuel. 2003. Vol. 82, Iss. 8. pp. 929–942.
5. Arkhipova Yu. A. The current state of the titaniumcontaining raw materials market in the world and in Russia. Gorny Informatsionno-analiticheskiy Byulleten'. 2007. No. 3. pp. 66–74.
6. Bykhovsky L., Tigunov L., Zubkov L. Raw material paradoxes of titanium. Metally Evrazii. 2003. No. 1. pp. 41–44.
7. Sadikhov G. B., Zablotskaya Yu. V., Anisonyan K. G., Olyunina T. V. On the complex use of leucoxene ores of the Yareg deposit with the production of synthetic rutile and wollastonite and the associated extraction of rare and rare earth elements. Metally. 2016. No. 6. pp. 3–10.
8. Zanaveskin K. L., Maslennikov A. N., Dmitriev G. S., Zanaveskin L. N. Autoclave processing of quartz-leucoxene concentrate (Yaregskoe deposit). Tsvetnye Metally. 2016. No. 3. pp. 49–56. DOI: 10.17580/tsm.2016.03.08.
9. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Special features of the Yaregskoye deposit quartz-leucoxene rougher concentrate chemical and mineral composition. Obogashchenie Rud. 2015. No. 5. pp. 25–32. DOI: 10.17580/or.2015.05.05.
10. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Influence of granulometric composition on leucoxene concentrate processing with titanium tetrachloride obtaining (Yaregskoe deposit). Tsvetnye Metally. 2016. No. 10. pp. 31–37. DOI: 10.17580/tsm.2016.10.11.
11. Smorokov A. A., Kantaev A. S., Bryankin D. V., Miklashevich A. A. Development of a low-temperature desiliconization method for the leucoxene concentrate of the Yarega deposit with a solution of ammonium hydrogen fluoride. Izvestiya Vuzov. Khimiya i Khimicheskaya Tekhnologiya. 2022. Vol. 65, Iss. 2. pp. 127–133.
12. Perovskiy I. А, Burtsev I. N., Ponaryadov A. V., Smorokov A. A. Ammonium fluoride roasting and water leaching of leucoxene concentrates to produce a high grade titanium dioxide resource (of the Yaregskoye deposit, Timan, Russia). Hydrometallurgy. 2022. Vol. 210. DOI: 10.1016/j.hydromet.2022.105858.
13. Zablotskaya Yu. V., Sadykhov G. B., Goncharenko T. V., Olyunina T. V., Anisonyan K. G., Tagirov R. K. Features of autoclave leaching of leucoxene concentrate with the participation of Ca(OH)2. Metally. 2011. No. 6. pp. 9–14.
14. Kopiev D. Yu., Anisonyan K. G., Olyunina T. V., Sadykhov G. B. Effect of the reducing roasting conditions on sulfuric acid recovery of leucoxene concentrate. Tsvetnye Metally. 2018. No. 11. pp. 56–61. DOI: 10.17580/tsm.2018.11.08.
15. Anisonyan K. G., Sadykhov G. B., Olyunina T. V., Goncharenko T. V., Leontiev L. I. Study of the process of magnetizing roasting of leucoxene concentrate. Metally. 2011. No. 4. С. 62–67.
16. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Vlasenko V. I. Reaction ability of titanium-bearing raw materials during the titanium tetrachloride obtaining. Tsvetnye Metally. 2017. No. 4. pp. 47–53. DOI: 10.17580/tsm.2017.04.07.
17. Zanaveskin K. L., Meshalkin V. P. Chlorination of quartz-leucoxene concentrate of Yarega field. Metallurgical and Materials Transactions B. 2020. Vol. 51. pp. 906–915.
18. Istomina E. I., Istomin P. V., Nadutkin A. V., Grass V. E. Desiliconization of leucoxene concentrate through the vacuum silicothermic reduction. Novye Ogneupory. 2020. No. 3. pp. 5–9.
19. Nikolaev A. A., Kirpichev D. E., Nikolaev A. V. Thermophysical parameters of the anode region of plasma arc under the reduction smelting of quartz-leucoxene concentrate in a metal-graphite reactor. Inorganic Materials: Applied Research. 2020. Vol. 11. pp. 563–567.
20. Nikolaev A. A., Nikolaev A. V., Kirpichev D. E. Separation of titanium and silicon oxides during plasma-arc melting of quartz-leucoxene concentrate. Inorganic Materials: Applied Research. 2022. Vol. 13. pp. 716–720.
21. Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I. Principles of pyro-hydrometallurgical processing of quartzleucoxene concentrate with the formation of a pseudobrukite phase. Obogashchenie Rud. 2021. No. 3. pp. 33–38. DOI: 10.17580/or.2021.03.06.
22. Fernando N., Swaminathan J., Hernandez F., Priyadarshana G., Sandaruwan C., Yang W., Karunaratne V., Wang Z., Amaratunga G., Kottegoda N., et al. Pseudobrookite based heterostructures for efficient electrocatalytic hydrogen evolution. Materials Reports: Energy. 2021. Vol. 1, Iss. 2. DOI: 10.1016/j.matre.2021.100020.
23. Lin Yan-Gu, Hsu Yu-Kuei, Lin Yu-Chang, Chen Ying-Chu. Electrodeposited Fe2TiO5 nanostructures for photoelectrochemical oxidation of water. Electrochimica Acta. 2016. Vol. 213. pp. 898–903.
24. Dondi M., Matteucci F., Cruciani G., Gasparotto G., Tobaldi D. M. Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties. Solid State Sciences. 2007. Vol. 9. pp. 362–369.
25. Min K., Park K., Lim A., Kim J., Kim D. Synthesis of pseudobrookite-type Fe2TiO5 nanoparticles and their Liion electroactivity. Ceramics International. 2012. Vol. 38. pp. 6009–6013.
26. Ruivo L. C. M., Yaremchenko A. A., Frade J. R., Kovalevsky A. V. Prospects of using pseudobrookite as an ironbearing mineral for the alkaline electrolytic production of iron. Materials. 2022. Vol. 15. DOI: 10.3390/ ma15041440.
27. Amali Herath, Chanaka Navarathna, Shannon Warren, Felio Perez, Charles U. Pittman, Todd E. Mlsna. Iron / titanium oxide-biochar (Fe2TiO5/BC): A versatile adsorbent / photocatalyst for aqueous Cr(VI), Pb2+, F and methylene blue. Journal of Colloid and Interface Science. 2022. Vol. 614. pp. 603–616.
28. Kuzin E. N., Kruchinina N. E. Production of complex coagulants based on mineral concentrates and their use in water treatment. Obogashchenie Rud. 2019. No. 3. pp. 43–48. DOI: 10.17580/or.2019.03.07.
29. Goroshchenko Ya. G. Chemistry of titanium. Kiev: Naukova Dumka, 1970. 416 p.
30. Barzakovsky V. P., Boikova A. I., Kurtseva N. N., Lapin V. V., Toropov N. A. Status diagrams of silicate systems: a reference book. Iss. 3: Triple systems. Leningrad: Nauka, 1972. 448 p.
31. Taylor R. W. Liquidus temperatures in the system FeO–Fe2O3–TiO2. Journal of the American Ceramic Society. 1963. Vol. 46, Iss. 6. pp. 276–279.
32. Shi C., Alderman O. L. G., Tamalonis A., Weber R., You J., Benmore C. J. Redox-structure dependence of molten iron oxides. Communications Materials. 2020. Vol. 1. DOI: 10.1038/s43246-020-00080-4.
33. Suzuki Y., Shinoda Y. Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review. Science and Technology of Advanced Materials. 2011. Vol. 12, Iss. 3. DOI: 10.1088/1468-6996/12/3/034301.

Language of full-text russian
Full content Buy