References |
1. Gontijo G. S., Brandão de Araújo A. C., Shiva Prasad S., Vascon celos L. G. S. et al. Improving the Bayer Process productivity — an industrial case study. Minerals Engineering. 2009. Vol. 22. pp. 1130–1136. DOI: 10.1016/j.mineng.2009.04.010. 2. Sutar H., Mishra S. C., Sahoo S. K., Chakraverty A. P. et al. Progress of red mud utilization: an overview. American Chemical Science Journal. 2014. Vol. 4, No. 3. pp. 255–279. DOI: 10.9734/ACSJ/2014/7258. 3. Ruys A. Refining of alumina: the Bayer process in alumina ceramics: biomedical and clinical applications. Woodhead Publishing Series in Biomaterials. 2019. pp. 49–70. DOI: 10.1016/B978-0-08-102442-3.00003-8. 4. Mucsi G., Csoke B., Solymár K. Grindability characteristics of lateritic and karst bauxites. International Journal of Mineral Processing. 2011. Vol. 100, No. 3-4. pp. 96–103. DOI: 10.1016/j.minpro.2011.05.006.
5. Power G., Gräfe M., Klauber C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy. 2011. Vol. 108, No. 1-2. pp. 33–45. DOI: 10.1016/j.hydromet.2011.02.006. 6. Tuazon D., Corder G. D. Life cycle assessment of seawater neutralised red mud for treatment of acid mine drainage. Resources, Conservation & Recycling. 2008. Vol. 52, No. 11. pp. 1307–1314. DOI: 10.1016/j.resconrec.2008.07.010. 7. Gräfe M., Power G., Klauber C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy. 2011. Vol. 108, No. 1-2. pp. 60–79. DOI: 10.1016/j.hydromet.2011.02.004. 8. Jones B. E. H., Haynes R. J. Bauxite processing residue: a critical review of its formation, properties, storage and revegetation. Critical Reviews in Environmental Science and Technology. 2011. Vol. 41. pp. 271–315. DOI: 10.1080/10643380902800000. 9. Sushil S., Batra V. S. Catalytic applications of red mud, an aluminium industry waste: A review. Applied Catalysis B: Environmental. 2008. Vol. 81, No. 1-2. pp. 64–77. DOI: 10.1016/j.apcatb.2007.12.002. 10. Tsamo C., Kofa G. P., Kamga R. Decreasing yield and alumina content of red mud by optimization of the bauxite processing process. International Journal of Metallurgical Engineering. 2017. Vol. 6, No. 1. pp. 1–9. DOI: 10.5923/j.ijmee.20170601.01. 11. Bhatnagar A., Vilar V. J. P., Botelho C. M. S., Boaventura R. A. R. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environmental Technology. 2011. Vol. 32, No. 3. pp. 231–249. DOI: 10.1080/09593330.2011.560615. 12. Sabirzyanov N. A., Yatsenko S. P. Hydrochemical techniques for comprehensive processing of bauxites. Yekaterinburg : UrO RAN, 2005. 340 p. 13. Brichkin V. N., Dubovikov О. А., Nikolayeva N. V., Besedin А. А. Red mud dewatering and basic trends in its recycling. Obogashchenie Rud. 2014. No. 1. pp. 44–48. 14. Ranveer A. C., Sutar S., Munde D. Review paper on bauxite residue characteristics, disposal & utilization. International Journal of Innovations in Engineering Research and Technology. 2015. Vol. 2. pp. 1–7. 15. Evans K. The history, challenges and new developments in the management and use of bauxite residue. Journal of Sustainable Metallurgy. 2016. Vol. 2. pp. 316–331. DOI: 10.1007/s40831-016-0060-x. 16. Traoré S., Diarra A., Kourouma O., Traoré D. L. Survey of bauxite resources, alumina industry and the prospects of the production of geopolymer composites from the resulting by-product. Vol. Geopolymers and Other Geosynthetics. Ed. M. Alshaaer, H.-Y. Jeon. 2019. pp. 1–25. DOI: 10.5772/intechopen.82413. 17. Rai S., Sneha Bahadure S., Chaddha M. J., Agnihotri A. Disposal practices and utilization of red mud (bauxite residue): a review in Indian context and abroad. Journal of Sustainable Metallurgy. 2020. Vol. 6. pp. 1–8. DOI: 10.1007/s40831-019-00247-5. 18. Sidibé D., Keita D., Cissé M., Traoré S. Investigation of red mud, rice husk and anthill based geopolymer composite for engineering applications. American Journal of Engineering Research. 2020. Vol. 9, No. 11. pp. 54–64. 19. Khanna R., Konyukhov Y., Zinoveev D., Jayasankar K. et al. Red mud as a secondary resource of low-grade iron: A global perspective. Sustainability. 2022. Vol. 14. p. 1258. DOI: 10.3390/su14031258. 20. Ibragimov A. T., Budon S. V. Developing a process for the production of alumina from Kazakhstan bauxites. Pavlodar : Dom pechati, 2010. 299 p. 21. Pechenkin M., Panov A., Ordon S., Milshin O. et al. Industrial experience of new sinter hydro-chemical processing process at BAZ-SUAL. Light Metals. 2018. pp. 9–15. DOI: 10.1007/978-3-319-72284-9_2. 22. Nikolaev I. V., Kirov S. S., Vorobiev I. B., Zakharova V. I. et al. Applicability of hydrogarnet technology for complex processing of Indian condalites. Izvestiya vuzov. Tsvetnaya metallurgiya. 2011. No. 2. pp. 24–27. 23. Mukhymbekova M. D., Rakhimov A. R., Ponomarev V. D. Processing of aluminosilicate slags (to obtain alumina) by soda sintering. Research papers of the Institute for Chemistry and Metallurgy at the Academy of Sciences of the Kazakh SSR. 1969. Vol. 11. pp. 9–16. 24. Ni L. P., Goldman M. M., Solenko T. V. Processing of high-iron bauxites. Moscow : Metallurgiya, 1979. 247 p. 25. Sazhin V. S. Novel hydrochemical techniques for producing alumina. Kiev : Naukova dumka, 1979. 203 p. 26. Zhong L., Zhang Y., Zhang Y. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. Journal of Hazardous Materials. 2009. Vol. 172. pp. 1629–1634. DOI: 10.1016/j.jhazmat. 2009.08.036. 27. Wang Y., Zhang T.-A., Lyu G., Guo F. et al. Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue. Journal of Cleaner Production. 2018. Vol. 188. pp. 456–465. 28. Medvedev V. V., Akhmedov S. N., Sizyakov V. M., Lankin V. P. et al. Hydrogarnet technology for bauxite processing as a modern alternative to the Bayer-sintering process. Tsvetnye Metally. 2003. No. 11. pp. 58–62. 29. Sizyakov V. M. The problems of advancing Russia’s alumina industry. Non-Ferrous Metals of Siberia – 2009: Proceedings of the 1st International Congress. Krasnoyarsk, 2009. pp. 120–134. 30. Lager G. A., Nipko J. C., Loong C.-K. Inelastic neutron scattering study of the (O4H4) substitution in garnet. Physica B: Condensed Matter. 1998. Vol. 241–243. pp. 406–408. DOI: 10.1016/S0921-4526(97)00603-0. 31. Ballaran T. B., Woodland A. B. Local structure of ferric iron-bearing garnets deduced by IR-spectroscopy. Chemical Geology. 2006. Vol. 225. pp. 360–372. DOI: 10.1016/J.CHEMGEO.2005.08.028. 32. Locock A. J. An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers & Geosciences. 2008. Vol. 34. pp. 1769–1780. DOI: 10.1016/j.cageo.2007.12.013. 33. Nobes R. H., Akhmatskaya E. V., Milman V., Winkler B. et al. Structure and properties of aluminosilicate garnets and katoite: an ab initio study. Computational Materials Science. 2000. Vol. 17. pp. 141–145. DOI: 10.1016/S0927-0256(00)00011-2. 34. Zoldi J., Solymar K., Zambo J., Jonas M. K. Iron hydrogarnets in the Bayer process. TMS Light Metals. 1987. pp. 105–111. 35. Solymar K., Steiner J., Zoldi J. Technical peculiarities and viability of hydrothermal treatment of red mud. TMS Light Metals. 1997. pp. 49–54. 36. Li X., Gu S., Yin Z., Wu G. et al. Regulating the digestion of high silica bauxite with calcium ferrite addition. Hydrometallurgy. 2010. Vol. 104. pp. 313–316. DOI: 10.1016/J.HYDROMET.2010.06.008. 37. Zhang R., Zheng S., Ma S., Zhang Y. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. Journal of Hazardous Materials. 2011. Vol. 189, No. 3. pp. 827–835. DOI: 10.1016/j.jhazmat.2011.03.004. 38. Wang L., Sun N., Tang H., Sun W. A review on comprehensive utilization of red mud and prospect analysis. Minerals. 2019. Vol. 9, No. 6. p. 362. DOI: 10.3390/min9060362. 39. Medvedev V. V., Akhmedov S. N., Sizyakov V. M., Lankin V. P. et al. Efficiency of processing schemes applied to Timan bauxites: A comparative analysis based on the calculation of material flow parameters. Tsvetnye Metally. 2003. No. 12. pp. 49–56. 40. Gorbachev E. V., Medvedev V. V., Shapot D. M., Kozlov V. A. et al. Method of producing iron-containing pigments. Patent RF, No. 2700071. Published: 12.09.2019. Bulletin No. 26. 41. Medvedev V. V., Akhmedov S. N. Hydrochemical method of processing aluminosilicate material. Patent RF, No. 2585648. Published: 27.05.2016. Bulletin No. 15. 42. Budon S. V., Ibragimov A. T., Mikhaylova O. I., Medvedev V. V. Hydrochemical processing of red muds generated by Aluminium of Kazakhstan JSC. Zapiski Gornogo instituta. 2013. Vol. 202. pp. 44–47. 43. Abdulvaliev R. A., Beysembekova K. O., Gladyshev S. V., Kovzalenko V. A. et al. Method for red mud processing. Patent RK, No. 25938. Published: 15.08.2012. Bulletin No. 8. 44. Bekturganov N. S., Abdulvaliev R. A., Gladyshev S. V., Beysembekova K. O. et al. Hydrogarnet technique for red mud processing. Patent RK, No. 26717. Published: 15.03.2013. Bulletin No. 3. 45. Bekturganov N. S., Abdulvaliev R. A., Gladyshev S. V., Beysembekova K. O. et al. Hydrogarnet technique for red mud processing. Patent RK, No. 27031. Published: 14.06.2013. Bulletin No. 6. 46. Bekturganov N. S., Abdulvaliev R. A., Gladyshev S. V., Beysembekova K. O. et al. Hydrogarnet technique for red mud processing. Patent RK, No. 27264. Published: 15.08.2013. Bulletin No. 7. 47. Bekturganov N. S., Myltykbaeva L. A., Abdulvaliev R. A., Tastanov E. A. et al. Establishing a new alumina site in Kazakhstan. Kompleksnoe ispolzovanie mineralnogo syrya. 2014. No. 2. pp. 37–43. 48. Abdulvaliev R. A., Abisheva Z. S., Bekturganov N. S., Gladyshev S. V. et al. Method for processing low-grade iron-bearing bauxites based on the Bayer-hydrogarnet process. Patent RK, No. 30113. Published: 15.07.2015. Bulletin No. 7. 49. Abdulvaliev R. A., Gladyshev S. V., Pozmogov V. A., Akhmadieva N. K. et al. A pilot unit for testing the Bayer-hydrogarnet technique designed to process iron-bearing bauxites. Kompleksnoe ispolzovanie mineralnogo syrya. 2016. No. 3. pp. 8–14. DOI: 10.31643/2018/166445. 50. Abdulvaliev R. A., Gladyshev S. V., Kenzhaliev B. K., Akhmadieva N. K. et al. Processing of red mud generated by a Turkish alumina plant resulting in the recovery of gallium and vanadium and production of iron oxide pigments. Khimicheskaya tekhnologiya. 2020. No. 1. pp. 24–29. DOI: 10.31044/1684-5811-2020-21-1-24-29. |