Journals →  Tsvetnye Metally →  2023 →  #1 →  Back

MATERIALS SCIENCE
ArticleName Processability and structural evolution of round ingots of Al – 2 % Cu – 2 % Mn alloy during forming
DOI 10.17580/tsm.2023.01.10
ArticleAuthor Belov N. A., Cherkasov S. O., Korotkova N. O., Tsydenov K. A.
ArticleAuthorData

National University of Science and Technology MISiS, Moscow, Russia:

N. A. Belov, Professor at the Department of Metal Forming, Doctor of Technical Sciences, e-mail: nikolay-belov@yandex.ru
S. O. Cherkasov, Postgraduate Student at the Department of Metal Forming
N. O. Korotkova, Engineer at the Department of Metal Forming, Candidate of Technical Sciences
K. A. Tsydenov, Master’s Student at the Department of Metal Forming

Abstract

This paper looks at the processability of round ingots of Al – 2% Cu – 2% Mn alloy during pressing, radial-displacement rolling and drawing. As a result of pressing combined with cross rolling, 9 mm round bars were obtained, which were then rolled and drawn into 0.5 mm wire. The wire was examined in its initial state and after different regimes of annealing. The paper shows that the cast structure contains a small amount (<2 vol. %) of eutectic particles Al2Cu and Al15(Fe,Mn)3Si2, which ensures a good deformation plasticity at the relatively low temperature of 300 oC and enables to produce 15 mm pressed round bars with a 94% reduction. In spite of considerable strain hardening, the bars displayed high processability when subjected to cold radial-displacement rolling and drawing. Thus, a 0.5 mm wire could be obtained with a total reduction of 99%. Mn-bearing dispersoids partially formed during pressing, which prevent softening during annealing. It is shown that the best combination of strength and plasticity is achieved after annealing at 350 oC, which indicates a rather high heat resistance. This experimental alloy can potentially be used as a basis for developing wrought alloys designed to produce round ingots on a commercial scale. Such ingots require no homogenization and can be used to produce a variety of deformed semi-finished products offering an optimum combination of mechanical performance and heat resistance.
This research was funded under Grant No. 20-19-00249 by the Russian Science Foundation.

keywords Heat-resistant aluminium alloys, Al – Cu – Mn system, pressing, radialdisplacement rolling, drawing, microstructure, mechanical properties
References

1. Makarov G. S. Ingots of aluminium alloys with magnesium and silicon for pressing: Fundamentals of production. Moscow : Intermet Engineering, 2011. 526 p.
2. Dobatkin V. I. Smelting and casting of aluminium alloys : Handbook. Moscow : Metallurgiya, 1983. 352 p.
3. Napalkov V. I., Cherepok G. V., Makhov S. V., Chernovol Yu. M. Continuous casting of aluminium alloys. Moscow : Intermet Engineering, 2005. 512 p.
4. Eskin D. G. Physical metallurgy of direct-chill casting of aluminum alloys. Florida : CRC Press, 2008. 328 p.
5. Polmear I. J. Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed. Oxford : Butterworth-Heinemann, 2006. 421 p.
6. Zhang Y., Li R., Chen P., Li X., Liu Z. Microstructural evolution of Al2Cu phase and mechanical properties of the large-scale Al alloy components under different consecutive manufacturing processes. Journal of Alloys and Compounds. 2019. Vol. 808. 151634. DOI: 10.1016/j.jallcom.2019.07.346.
7. He H., Yi Y., Huang S., Zhang Y. Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al – Cu alloy. Materials Science and Engineering: A. 2018. Vol. 712. pp. 414–423. DOI: 10.1016/J.MSEA.2017.11.124.
8. Guo W., Yi Y., Huang S., Mao X. et al. Effects of deformation temperature on the evolution of second-phase and mechanical properties of large 2219 Al – Cu alloy rings. Materials Characterization. 2020. Vol. 160. 110094. DOI: 10.1016/j.matchar.2019.110094.
9. Dar S. M., Liao H. Creep behavior of heat resistant Al – Cu – Mn alloys strengthened by fine (Θ') and coarse (Al20Cu2Mn3) second phase particles. Materials Science and Engineering A. 2019. Vol. 763. 138062. DOI: 10.1016/j.msea.2019.138062.
10. Ber L. B., Kolobnev N. I., Tsukrov S. L. Heat treatment of aluminum alloys, 1st ed. Florida : CRC Press, 2020. 350 p.
11. Belov N. A., Akopyan T. K., Shurkin P. K., Korotkova N. O. Comparative analysis of structure evolution and thermal stability of experimental AA2219 and model Al – 2wt.% Mn – 2wt.% Cu cold rolled alloys. Journal of Alloys and Compounds. 2021. Vol. 864. p. 158823. DOI: 10.1016/J.JALLCOM.2021.158823.
12. Belov N. A., Shurkin P. K., Korotkova N. O., Cherkasov S. O. The effect of heat treatment on the structure and mechanical properties of cold-rolled sheets made of Al – Cu – Mn alloys with varying copper to manganese ratios. Tsvetnye Metally. 2021. No. 9. pp. 80–86. DOI: 10.17580/tsm.2021.09.09.
13. Belov N. A., Akopyan T. K., Korotkova N. O., Cherkasov S. O., Yakovleva A. O. Effect of Fe and Si on the phase composition and microstructure evolution in alloy Al – 2wt.% Cu – 2wt.% Mn during solidification, cold rolling and annealing. JOM. 2021. Vol. 16, No. 1. pp. 3827–3837. DOI: 10.1007/s11837-021-04907-4.
14. Belov N. A., Korotkova N. O., Cherkasov S. O., Yakovleva A. O. Effect of iron and silicon concentrations on the phase composition and microstructure of wrought alloy Al – 2 wt.% Mn – 2 wt.% Cu. Physics of Metals and Metallography. 2021. Vol. 122, No. 11. pp. 1095–1102. DOI: 10.1134/S0031918X2111003X.
15. GOST 11069–2001. Primary aluminium. Grades. Introduced: 01.01.2003.
16. GOST 859–2001. Copper. Grades. Introduced: 01.03.2002.
17. GOST R 53777–2010. Master alloys of aluminium. Introduced: 01.07.2010.
18. Zolotorevskiy V. S., Belov N. A. Metallurgy of cast aluminium alloys. Moscow : MISiS, 2005. 376 p.
19. GOST 10446–80. Wire. Tensile test method. Introduced: 01.07.1982.
20. Bаckerud L., Chai G., Tamminen J. Solidification characteristics of aluminum alloys. Vol. 1: Foundry Alloys, 1st ed. Oslo : Skanaluminium, 1986. 159 p.
21. Feng Z. Q., Yang Y. Q., Huang B., Li M. H., Chen Y. X., Ru J. G. Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy. Journal of Alloys and Compounds. 2014. Vol. 583. pp. 445–451. DOI: 10.1016/j.jallcom.2013.08.200.
22. Rushchits S. V., Akhmedyanov A. M., Drits A. M., Nuzhdin V. N. Deformation behavior of 1565ch alloy during hot uniaxial upsetting. Tsvetnye Metally. 2019. No. 2. pp. 62–68. DOI: 10.17580/tsm.2019.02.10.

23. Artsruni A. A., Grigoryan V. A., Drits A. M. Prospects of usage of alloy 1565ch with new approach to aluminium alloys application in armor plating of light fighting machines. Tsvetnye Metally. 2017. No. 5. pp. 80–84. DOI: 10.17580/tsm.2017.05.12.

Language of full-text russian
Full content Buy
Back