References |
1. Ojeda Pardo F. R., Sánchez Figueredo R. P., Belette Fuentes O., Quiroz Cabascango V. E., Mosquera Urbano A. P. Metallographic properties evaluation of the specimens obtained by the vibratory method (cast iron ISO 400-12). Journal of Physics: Conference Series. 2022. 2388. p. 012058. DOI: 10.1088/1742-6596/2388/1/012058 2. Savchenkov S., Beloglazov I. Features of the process obtaining of Mg-Zn-Y master alloy by the metallothermic recovery method of yttrium fluoride melt. Crystals. 2022. Vol. 12, Iss. 6. p. 771. DOI: 10.3390/CRYST12060771 3. Bolobov V. I., Chupin S. A., Bochkov V. S., Akhmerov E. V., Plaschinskiy V. A. The effect of finely divided martensite of austenitic high manganese steel on the wear resistance of the excavator buckets teeth. Key Engineering Materials. 2020. Vol. 854. pp. 3–9. DOI: 10.4028/www.scientifik.net/KEM.854.3 4. Shestakov A. K., Sadykov R. M., Petrov P. A. Multifunctional crust breaker for automatic alumina feeding system of aluminum reduction cell. E3S Web of Conferences. 2021. Vol. 266. DOI: 10.1051/e3sconf/202126609002 5. Fedorova E., Pupysheva E., Morgunov V. Modelling of red-mud particle-solid distribution in the feeder cup of a thickener using the combined CFD-DPM approach. Symmetry. 2022. Vol. 14. p. 2314. DOI: 10.3390/SYM14112314 6. Bazhin V. Y., Nguyen H. H. Vietnamese metallurgy on the way out of the crisis with the use of automated control systems. AIP Conference Proceedings. 2022. 2467. 030018. DOI: 10.1063/5.0092750 7. Cabascango V. E. Q., Bazhin V. Y., Martynov S. A., Pardo F. R. O. Automatic control system for thermal state of reverberatory furnaces in production of nickel alloys. Metallurgist. 2022. Vol. 66. pp. 104–116. DOI: 10.1007/S11015-022-01304-3 8. Bolshunov A. V., Vasilev D. A., Ignatiev S. A., Dmitriev A. N., Vasilev N. I. Mechanical drilling of glaciers with bottom-hole scavenging with compressed air. Ice and Snow. 2022. Vol. 62. pp. 35–46. DOI: 10.31857/S2076673422010114 9. Shklyarskiy Y. E., Batueva D. E. Operation mode selection algorithm development of a wind-diesel power plant supply complex. Journal of Mining Institute. 2022. Vol. 253. pp. 115–126. DOI: 10.31897/PMI.2022.7 10. Bazhin V., Masko O. Monitoring of the behaviour and state of nanoscale particles in a gas cleaning system of an ore‐thermal furnace. Symmetry. 2022. Vol. 14, Iss. 5. p. 923. DOI: 10.3390/SYM14050923 11. GOST 33718–2015. Cranes. Wire ropes. Care and maintenance, inspection and discard. Introduced: 01.04.2017. 12. Zhou P., Zhou G., Zhu Z., He Z., Ding X., Tang C. A review of non-destructive damage detection methods for steel wire ropes. Appl. Sci. 2019. Vol. 9. pp. 2771.
13. RD ROSEK-012–97. Steel ropes. Control and rejection standards. Moscow: ROSEK, 1997. 49 p. 14. Awrejcewicz J., Oikonomou V. K., Boikov A., Payor V. The present issues of control automation for levitation metal melting. Symmetry. 2022. Vol. 14. p. 1968. DOI: 10.3390/SYM14101968 15. Sukhorukov V. V., Kotelnikov V. S. Monitoring of the state of steel ropes by automated means of technical diagnostics. Bezopasnost truda v promyshlennosti. 2019. No. 9. pp. 72–81. 16. Wire rope monitoring gives customers a lifting efficiency, production line safety. Available at: https://www.konecranes.com/discover/wire-rope-monitoring-givescustomers-lift-in-efficiency-production-line-safety. Accessed: 06.01.2023. 17. Wire rope inspection & monitoring system. Available at: https://www.uniquegroup.com/product/ug-wire-rope-inspection-monitoring-system. Accessed: 06.01.2023. 18. Sergeev V. V., Cheremisina O. V., Fedorov A. T., Gorbacheva A. A., Balandinsky D. A. Interaction features of sodium oleate and oxyethylated phosphoric acid esters with the apatite surface. ACS Omega. 2022. Vol. 7, Iss. 3. pp. 3016–3023. DOI: 10.1021/acsomega.1c06047 19. Cheremisina O. V., Ponomareva M. A., Sergeev V. V., Mashukova Y. A., Balandinsky D. A. Extraction of rare earth metals by solid-phase extractants from phosphoric acid solution. Metals. 2021. Vol. 11. p. 991. DOI: 10.3390/met11060991 20. Greaves D., Jin S., Wong P., Kuskova Y. V., Erokhina O. O., Simakov A. S. Problematics and perspectives of the development of automatic control systems for concentration tables using computer simulation. Journal of Physics: Conference Series. 2019. Vol. 1384, Iss. 1. 012023. DOI: 10.1088/1742-6596/1384/1/012023 21. Simakov A. S., Trifonova M. E., Gorlenkov D. V. Virtual analyzer of the voltage and current spectrum of the electric arc in electric arc furnaces. Russian Metallurgy (Metally). 2021. Vol. 6. pp. 713–719. DOI: 10.1134/S0036029521060252 22. Ameyt Yu. et al. Opportunities to improve visual inspection of ropes. OITAF recommendation. No. 30. 81 p. 23. Kashurin R. R., Gerasev S. A., Litvinova T. E., Zhadovskiy I. T. Prospective recovery of rare earth elements from waste. Journal of Physics: Conference Series. 2020. Vol. 1679. p. 052070. DOI: 10.1088/1742-6596/1679/5/052070 24. Tarabarinova T. A., Golovina E. I. Capitalization of mineral resources as an innovation ecological strategy. Geology and Mineral Resources of Siberia. 2021. Vol. 4. pp. 86–96. DOI: 10.20403/2078-0575-2021-4-86-96 25. Litvinova T., Kashurin R., Zhadovskiy I., Gerasev S. The kinetic aspects of the dissolution of slightly soluble lanthanoid carbonates. Metals. 2021. Vol. 11. p. 1793. DOI: 10.3390/MET11111793 26. Zakirova G., Pshenin V., Tashbulatov R., Rozanova L. Modern bitumen oil mixture models in ashalchinsky field with low-viscosity solvent at various temperatures and solvent concentrations. Energies. 2022. Vol. 16. p. 395. DOI: 10.3390/EN16010395 27. Kulchitskiy А. А., Potapov А. I., Smirnov А. G., Boykov V. I. Geometry control system for axisymmetric products with an angular mirror transducer. Izvestiya vuzov. Priborostroenie. 2020. Vol. 63. No. 8. pp. 720–726. 28. Yaman O., Karakose M. Auto-correlation based elevator rope monitoring and fault detection approach with image processing. Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017. pp. 1–5. DOI: 10.1109/IDAP.2017.8090176 29. Vasilyeva N. V., Boikov A. V., Erokhina O. O., Trifonov A. Y. Automated digitization of radial charts. Journal of Mining Institute. 2021. Vol. 247. pp. 82–87. DOI: 10.31897/PMI.2021.1.9 30. Sun H. X., Zhang Y. H., Luo F. L. Texture segmentation and boundary recognition of wire rope images in complicated background. Acta Photonica Sinica. 2010. Vol. 39. pp. 1666–1671. 31. Makhov V. Е., Potapov А. I., Shaldaev S. Е. Investigation of image boundaries by contrast extraction using an optical-electronic system. Part 1. Scientific and methodological principles of image border control by contrast extraction. Kontrol. Diagnostika. 2017. No. 10. pp. 44–51. 32. Kofnov О. V. Model and algorithms for digital image processing for estimating the geometric parameters of materials with a periodic structure: Dissertation … of Candidate of Engineering Sciences. Saint Petersburg: Saint Petersburg State University of Industrial Technologies and Design, 2015. 175 p. 33. Pshenin V., Liagova A., Razin A., Skorobogatov A., Komarovsky M. Robot crawler for surveying pipelines and metal structures of complex spatial configuration. Infrastructures. 2022. Vol. 7. p. 75. DOI: 10.3390/INFRASTRUCTURES7060075 34. Platzer E. S., Nägele J., Wehking K. H., Denzler J. HMM – based defect localization in wire ropes – a new approach to unusual subsequence recognition. Lecture Notes in Computer Science. 2009. Vol. 5748. pp. 442–451. DOI: 10.1007/978-3-642-03798-6_45 35. Platzer E. S., Wehking K. H., Denzler J. On the suitability of different features for anomaly detection in wire ropes. Proceedings of the International Conference on Computer Vision, Imaging and Computer Graphics, Lisboa, Portugal, 5–8 February 2009. pp. 296–308. 36. Boikov A., Payor V., Savelev R., Kolesnikov A. Synthetic. Data generation for steel defect detection and classification using deep learning. Symmetry. 2021. Vol. 13, Iss. 7. 1176. DOI: 10.3390/sym13071176 37. Zakharov L., Martyushev D., Ponomareva I. N. Predicting dynamic formation pressure using artificial intelligence methods. Journal of Mining Institute. 2022. Vol. 253. pp. 23–32. DOI: 10.31897/PMI.2022.11 38. Zhou P., Zhou G., He Z., Tang C., Zhu Z., Li W. A novel texture-based damage detection method for wire ropes. Measurement. 2019. Vol. 148. 106954. DOI: 10.1016/j.measurement.2019.106954 39. Huang X., Liu Z., Zhang X., Kang J. et al. Surface damage detection for steel wire ropes using deep learning and computer vision techniques. Measurement. 2020. Vol. 161. 107843. DOI: 10.1016/j.measurement.2020.107843 40. Bulatov V. V. Optoelectronic system for detecting sheet glass flaws based on vision technology. Dissertation … of Candidate of Engineering Sciences. Saint Petersburg: Saint Petersburg Mining University, 2013. 149 p. |