Journals →  Tsvetnye Metally →  2023 →  #5 →  Back

MATERIALS SCIENCE
ArticleName Understanding the effect of external impacts and diamond nanoparticles on the structure and physico-mechanical properties of Mg – Ca – Zn alloy
DOI 10.17580/tsm.2023.05.10
ArticleAuthor Khrustalev A.P., Zhukov I. A., Marchenko E. S., Vorozhtsov A. B.
ArticleAuthorData

National Research Tomsk State University, Tomsk, Russia:

A. P. Khrustalev, Senior Researcher at Metallurgical Nanotechnology Laboratory, Candidate of Physics and Mathematics Sciences, e-mail: tofik0014@gmail.com
I. A. Zhukov, Head of Metallurgical Nanotechnology Laboratory, Doctor of Technical Sciences
E. S. Marchenko, Head of Superelastic Biointerfaces Laboratory, Doctor of Physics and Mathematics Sciences, Associate Professor
A. B. Vorozhtsov, Vice Rector for Research and Innovation, Head of High-Energy and Special Materials Laboratory, Doctor of Physics and Mathematics Sciences, Professor

Abstract

Many of the current research studies focus on obtaining and examining new light alloys strengthened with non-metallic particles, meant for application in various industries. Casting provides the most universal approach to the production of light alloys. The high strength of diamond nanoparticles can be utilized for effective strengthening of the metal matrix, when a small amount of nanoparticles added translate into enhanced mechanical properties. However, introducing nanoparticles into the melt is not easy, as due to poor surface wettability of such particles, they tend to form agglomerates and float on the melt surface. External impacts on molten metal during casting help raise the surface wettability of micro- and nanoparticles and ensure their even distribution. The authors obtained and examined a Mg – Ca – Zn alloy dispersion strengthened with diamond nanoparticles. Pure magnesium, metallic zinc, calcium and detonation-synthesized diamond nanopowder were used as initial materials. The master alloy was produced from a Mg – 5% nanodiamond powder mix by impact-wave compacting. The authors examined the elemental and phase compositions, as well as the structure and physico-mechanical properties of the obtained alloys after casting. The structural study showed that the diamond nanoparticles produce a modifying effect on the microstructure by making the average grain size of magnesium alloy smaller. Grain refinement and introduction of particles into the magnesium matrix helped raise the yield strength, the tensile strength, as well as the tensile and compression ductility of magnesium alloy.
This research was funded by the Ministry of Science and Higher Education of the Russian Federation; Agreement No. 075-15-2021-1384.

keywords Magnesium, casting, nanodiamond, structure, phase composition, dispersion strengthening, mechanical properties
References

1. Wang J., Chen Y., Chen Z., Llorca J., Zeng X. Deformation mechanisms of Mg – Ca – Zn alloys studied by means of micropillar compression tests. Acta Materialia. 2021. Vol. 217. 117151. DOI: 10.1016/j.actamat.2021.117151
2. Papillon J., Salero P., Mercier F., Fabrègue D., Maire E. Compressive deformation behavior of dendritic Mg – Ca (– Zn) alloys at high temperature. Materials Science and Engineering: A. 2019. Vol. 763. 138180. DOI: 10.1016/j.msea.2019.138180
3. Xu Z., Smith C., Chen S., Sankar J. Development and microstructural characterizations of Mg – Zn – Ca alloys for biomedical applications. Materials Science and Engineering: B. 2011. Vol. 176, No. 20. pp. 1660–1665. DOI: 10.1016/j.mseb.2011.06.008
4. Huskins E. L., Cao B., Ramesh K. T. Strengthening mechanisms in an Al – Mg alloy. Materials Science and Engineering: A. 2010. Vol. 527, No. 6. pp. 1292–1298. DOI: 10.1016/j.msea.2009.11.056
5. Dey A., Pandey K. M. Magnesium metal matrix composites – a review. Reviews on Advanced Materials Science. 2015. Vol. 42, No. 1. pp. 58–67.
6. Vijayabhaskar S., Rajmohan T. Experimental investigation and optimization of machining parameters in WEDM of nano-SiC particles reinforced magnesium matrix composites. Silicon. 2019. Vol. 11, No. 4. pp. 1701–1716. DOI: 10.1007/s12633-017-9676-0
7. Bettles C. J., Gibson M. A., Venkatesan K. Enhanced age-hardening behaviour in Mg – 4 wt. % Zn micro-alloyed with Ca. Scripta Materialia. 2004. Vol. 51. pp. 193–197. DOI: 10.1016/j.scriptamat.2004.04.020
8. Horie T., Iwahori H., Awano Y., Matsui A. Creep properties of Mg – Zn alloy improved by calcium addition. Journal of Japan Institute of Light Metals. 1999. Vol. 49. pp. 272–276.
9. Nie J. F., Muddle B. C. Precipitation hardening of Mg – Ca (– Zn) alloys. Scripta Materialia. 1997. Vol. 37. pp. 1475–1481.
10. Oh J. C., Ohkubo T., Mukai T., Hono K. TEM and 3DAP characterization of an age-hardened Mg – Ca – Zn alloy. Scripta Materialia. 2005. Vol. 53. pp. 675–679.
11. Cai S., Lei T., Li N., Feng F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg – Zn alloys. Materials Science and Engineering: C. 2012. Vol. 32, No. 8. pp. 2570–2577. DOI: 10.1016/j.msec.2012.07.042
12. Bakhsheshi-Rad H. R., Idris M. H., Abdul-Kadir M. R., Ourdjini A. et al. Mechanical and biocorrosion properties of quaternary Mg – Ca – Mn – Zn alloys compared with binary Mg – Ca alloys. Materials & Design. 2014. Vol. 53. pp. 283–292. DOI: 10.1016/j.matdes.2013.06.055
13. Skolakova A., Lovasi T., Pinc J., Kacenka Z. et al. The effect of zinc and calcium addition on magnesium alloy. Manufacturing Technology. 2020. Vol. 20, No. 5. pp. 668–676. DOI: 10.21062/mft.2020.107
14. Malaki M., Xu W., Kasar A. K., Menezes P. L. et al. Advanced metal matrix nanocomposites. Metals. 2019. Vol. 9, Iss. 3. 330. DOI: 10.3390/met9030330
15. Watanabe Y. et al. Fabrication of Al-based composites by centrifugal mixed-powder method and their application for grinding wheels. Journal of Materials Engineering and Performance. 2019. Vol. 28. pp. 3852–3863. DOI: 10.1007/s11665-019-03917-3
16. Gong H. et al. Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application. Journal of Materials Science: Materials in Medicine. 2015. Vol. 26, Iss. 2. pp. 1–9.
17. Dieringa H., Hort N. Magnesium-based metal matrix nanocomposites – processing and properties. TMS 2018 147th Annual Meeting & Exhibition. Supplemental Proceedings. 2018. pp. 679–691. DOI: 10.1007/978-3-319-72526-0_64
18. Khrustalyov A. P., Kozulin A. A., Zhukov I. A., Khmeleva M. G. et al. Influence of titanium diboride particle size on structure and mechanical properties of an Al – Mg alloy. Metals. 2019. Vol. 9. p. 1030. DOI: 10.3390/met9101030
19. Gromov A. A., Vorozhtsov S. A., Komarov V. F., Sakovich G. V. et al. Ageing of nanodiamond powder: Physical characterization of the material. Materials Letters. 2013. Vol. 91. pp. 198–201. DOI: 10.1016/j.matlet.2012.09.066
20. Vorozhtsov S., Vorozhtsov A., Kudryashova O., Zhukov I., Promakhov V. Structural and mechanical properties of aluminium-based composites processed by explosive compaction. Powder Technology. 2017. Vol. 313. pp. 251–259. DOI: 10.1016/j.powtec.2017.03.027
21. Vorozhtsov S., Minkov L., Dammer V., Khrustalyov A. et al. Ex situ introduction and distribution of nonmetallic particles in aluminum melt: Modeling and experiment. JOM. 2017. Vol. 69. pp. 2653–2657. DOI: 10.1007/s11837-017-2594-1
22. Zeka B., Markoli B., Mrvar P., Medved J., Petric M. Suitability of moulding materials for Al – Li alloy casting. Materials and Technology. 2021. Vol. 55. pp. 311–316. DOI: 10.17222/mit.2020.208
23. Song M. Y., Kwak Y. J., Choi E. Hydrogen storage properties of Mg-graphene composites. Korean Journal of Metals and Materials. 2018. Vol. 56, No. 7. pp. 524–531.
24. Priyadarshi A., Khavari M., Subroto T., Prentice P. et al. Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements. Ultrasonics Sonochemistry. 2021. Vol. 79. 105792. DOI: 10.1016/j.ultsonch.2021.105792
25. Dalton D. A. et al. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Scientific Reports. 2013. Vol. 3, Iss. 1. 2400. DOI: 10.1038/srep02400
26. Li S. et al. A review on thermal conductivity of magnesium and its alloys. Journal of Magnesium and Alloys. 2020. Vol. 8, Iss. 1. pp. 78–90.
27. Vostrý P., Stulíková I., Smola B., Riehemann W., Mordike B. L. Structure and stability of microcrystalline Mg – Ca alloy. Materials Science and Engineering: A. 1991. Vol. 137. pp. 87–92. DOI: 10.1016/0921-5093(91)90321-D
28. Naik S. N., Walley S. M. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals. Journal of Materials Science. 2020. Vol. 55, No. 7. pp. 2661–2681. DOI: 10.1007/s10853-019-04160-w
29. Dieringa H., Katsarou L., Buzolin R., Szakács G. et al. Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability. Metals. 2017. Vol. 7. p. 388. DOI: 10.3390/met7100388
30. Khrustalyov A. P., Garkushin G. V., Zhukov I. A., Razorenov S. V., Vorozhtsov A. B. Quasi-static and plate impact loading of cast magnesium alloy ML5 reinforced with aluminum nitride nanoparticles. Metals. 2019. Vol. 9. p. 715. DOI: 10.3390/met9060715
31. Promakhov V. V., Khmeleva M. G., Zhukov I. A., Platov V. V. et al. Influence of vibration treatment and modification of A356 aluminum alloy on its structure and mechanical properties. Metals. 2019. Vol. 9. p. 87. DOI: 10.3390/met9010087

Language of full-text russian
Full content Buy
Back