ArticleName |
Alternative anode binders for aluminum electrolysis |
ArticleAuthorData |
Institute of Chemistry and Chemical Technology at the Siberian Branch of the Russian Academy of Sciences, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia1 ; Siberian Federal University, Oil and Gas Institute, Krasnoyarsk, Russia2:
P. N. Kuznetsov, Lead Researcher1, Professor2, Doctor of Chemical Sciences, e-mail: kpn@icct.ru
A. V. Obukhova, Research Fellow1, Associate Professor2, Candidate of Chemical Sciences, e-mail: lab9team@icct.krasn.ru
Institute of Chemistry and Chemical Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia:
B. Avid, Principal Researcher, Doctor of Chemical Sciences
Institute of Chemistry and Chemical Technology at the Siberian Branch of the Russian Academy of Sciences, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia: L. I. Kuznetsova, Lead Researcher, Candidate of Chemical Sciences, e-mail: kuzpn@icct.ru |
References |
1. Aluminum. U.S. Geological Survey, Mineral Commodity Summaries, January 2020. Available at: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-aluminum.pdf. 2. Primary Aluminium Production. International Aluminium Institute. Available at: https://international-aluminium.org/statistics/primary-aluminium-production/. 3. Korneev S. I. China’s aluminium sector and prospects of global aluminium industry. Tsvetnye Metally. 2021. No. 4. pp. 5–11. 4. Gorlanov E. S., Brichkin V. N., Polyakov А. А. Electrolytic production of aluminium. Review. Part 1. Conventional areas of development. Tsvetnye Metally. 2020. No. 2. pp. 36–41. 5. Sizyakov V. M., Polyakov P. V., Bazhin V. Yu. Current trends and strategic objectives in the production of aluminum and its alloys in Russia. Tsvetnye Metally. 2022. No. 7. pp. 16–23. 6. Chevarin F., Lemieux L., Picard D., Ziegler D. et al. Characterization of carbon anode constituents under CO2 gasification: A try to understand the dusting phenomenon. Fuel. 2015. Vol. 156. pp. 198–210. 7. Wu X. Inert anodes for aluminum electrolysis. The Minerals, Metals & Materials Series. Switzerland : Springer Nature, 2021. 183 p. 8. Mann V., Buzunov V., Pingin V., Zherdev A. et al. Environmental aspects of UC RUSAL’s aluminum smelters sustainable development. Light Metals. 2019. pp. 553–563. 9. Babich A., Senk D. Coke in the iron and steel industry. New trends in coal conversion: combustion, gasification, emissions, and coking. Cambridge : Woodhead Publishing, 2019. pp. 367–404. 10. Crafting a green future. Annual Report 2019. RUSAL. Available at: https://rusal.ru/upload/iblock/b5c/b5c1bfaee0b83bdc5602cd8ee5f9c6bb.pdf 11. Kovalev E. T., Malina V. P., Rudyka V. I., Soloviov M. A. Global coal, coke, and steel markets and innovations in coke production: a report on the European coke 2018 summit. Coke and Chemistry. 2018. Vol. 61, Iss. 7. pp. 235–245. 12. Kozlov A. P., Subbotin S. P., Solodov V. S., Cherkasova T. G. et al. Innovative coal-tar products at PAO Koks. Coke and Chemistry. 2020. Vol. 63, Iss. 7. pp. 344–350. 13. Gorlanov E. S., Kawalla R., Polyakov A. A. Electrolytic production of aluminium. Review. Part 2. Development prospects. Tsvetnye Metally. 2020. No. 10. pp. 42–49. 14. Sidorov O. F. Reducing the carcinogenic impact of pitch processing. Coke and Chemistry. 2013. Vol. 56, Iss. 2. pp. 63–69. 15. Chen P., Metz J. N., Mennito A. S., Merchant S. et al. Petroleum pitch: exploring a 50-year structure puzzle with real-space molecular imaging. Carbon. 2020. Vol. 161. pp. 456–465. 16. Kapustin V. M., Glagoleva V. F. Physicochemical aspects of petroleum coke formation (review). Petroleum Chemistry. 2016. Vol. 56, No. 1. pp. 1–9. 17. Khayrutdinov I. R., Akhmetov M. M., Telyashev E. G. Current status and prospects in the production of coke and pitch from petroleum pitch. Rossiyskiy khimicheskiy zhurnal. 2006. No. 1. pp. 25–28. 18. Smakova U. M., Fedoseeva M. V., Budnik V. A. Structure and types of petroleum pitches. Pitch production prospects. Neftepererabotka i neftekhimiya. 2019. No. 1. pp. 19–22. 19. Mukhamedzyanova A. A., Khaibullin A. A., Telyashev E. G., Gimaev R. N. Production of petroleum pitch from oil refinery residues. Chemistry and Technology of Fuels and Oils. 2011. Vol. 47, Iss. 2. pp. 90–96. 20. Mukhamedzyanova A. A., Gimaev R. N., Khaibullin A. A., Telyashev E. G. A study of quality characteristics of pyrolysis coal tar pitch. Vestnik Bashkirskogo universiteta. 2012. No. 2. pp. 909–915. 21. Andreykov E. I. Raw material for carbon Materials on the basis of the products of coke chemistry and thermal dissolution of coal. Khimiya v interesakh ustoychivogo razvitiya. 2016. No. 3. pp. 317–323. 22. Lapidus A. L., Khudyakov D. S., Zhagfarov F. G., Beilina N. Y. Characterization of pitch and coke obtained from the semicoking tar of sulfur oil shale from the Volga basin. Solid Fuel Chemistry. 2020. Vol. 54, Iss. 1. pp. 21–24. 23. Hamaguchi M., Okuyama N., Shishido T., Sakai K. et al. Prebaked anode from coal extracts (3) – carbonization properties of HyperCoal and blends with binder pitch. Light Metals. 2012. pp. 1219–1221. 24. Yoshida T., Li C., Takanohashi T., Matsumura A. et al. Effect of extraction condition on “HyperCoal” production (2) — effect of polar solvents under hot filtration. Fuel Processing Technology. 2004. Vol. 86, Iss. 1. pp. 61–72. 25. Koyano K., Takanohashi T., Saito I. Estimation of the extraction yield of coals by a simple analysis. Energy Fuels. 2011. Vol. 25, Iss. 6. pp. 2565–2571. 26. Kuznetsov P. N., Kuznetsova L. I., Buryukin F. A., Marakushina E. N. et al. Methods for the preparation of coal-tar pitch. Solid Fuel Chemistry. 2015. Vol. 49, Iss. 4. pp. 213–225. 27. Rahman M., Pudasainee D., Gupta R. Review on chemical upgrading of coal: production processes, potential applications and recent developments. Fuel Processing Technology. 2017. Vol. 158. pp. 35–56. 28. Andrews R. J., Rantell T., Jacques D., Hower J. C. et al. Mild coal extraction for the production of anode coke from Blue Gem coal. Fuel. 2010. Vol. 89, Iss. 9. pp. 2640–2647. 29. Kuznetsov P. N., Marakushina E. N., Buryukin F. A., Ismagilov Z. R. Produc tion of alternative pitch from coal. Khimiya v interesakh ustoychivogo razvitiya. 2016. No. 3. pp. 325–333. 30. Kuznetsov P. N., Kamenskiy E. S., Kuznetsova L. I. Comparative study of the properties of the coal extractive and commercial pitches. Energy Fuels. 2017. Vol. 31, Iss. 5. pp. 5402–5410. 31. Kuznetsov P. N., Kamenskiy E. S., Kuznetsova L. I. Solvolysis of bituminous coal in coal- and petroleum-derived commercial solvents. ACS Omega. 2020. Vol. 5, Iss. 24. pp. 14384–14393. 32. Kuznetsov P. N., Ismagilov Z. R., Kuznetsova L. I., Avid B. et al. The composition and properties of soluble products from the coal thermo solvolysis with hydrocarbon residues and blends as solvents. Eurasian Chemico-Technological Journal. 2022. Vol. 24, Iss. 3. pp. 183–190. 33. GOST 7847–2020. Coal tar pitch. Methods for the determination of mass fraction of substances insoluble in toluene. Introduced: 01.03.2021. 34. GOST 10200–83. Electrode coal-tar pitch. Specifications. Introduced: 01.01.1985. 35. GOST 9950–83. Coal tar pitch. Methods for the determination of softening point. Introduced: 30.06.1984. 36. GOST R ISO 6998–2017. Carbonaceous materials for the production of aluminium. Pitch for electrodes. Determination of coking value. Introduced: 01.08.2018. 37. Marakushina E. N. Production of pitches and binders by thermal dissolution: Candidate of Technical Scienses dissertation. Moscow, 2016. 137 p. 38. TU 48-5-80–86. Anode carbon paste. Introduced: 01.07.1986. |