Журналы →  Eurasian Mining →  2023 →  №1 →  Назад

Название Modeling cumulative availability curve of gold resources
DOI 10.17580/em.2023.01.07
Автор Kharitonova M. Yu., Matsko N. A.
Информация об авторе

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia:

Kharitonova M. Yu., Senior Researcher, Candidate of Engineering Sciences, ritau@icct.ru

Federal Research Center for Computer Science and Control, Russian Academy of Sciences, Moscow, Russia:

Matsko N. A., Leading Researcher, Doctor of Engineering Sciences


The article presents the authors’ approach to evaluation of economic availability of mineral resources. The approach uses the cumulative availability curves plotted for certain minerals, which is a common way of solving such problems abroad. The curves represent the cumulative volumes of mineral resources at the deposits ranked in the sequence from the best to the worst versus the estimated cost of the mineral product. These costs should cover all expenses connected with mining and thus provide a zero net present value of extraction of certain mineral resources. The curves imply that as deposits having the worst mining conditions and containing low-quality minerals are involved in the development, the estimated costs increase. The cost calculation of is a very time-consuming process, and the main difficulty is the cost estimation of mineral mining and processing. The authors propose an approach to modeling the unit costs of mineral mining and processing depending on the deposit development probabilities estimated for a set of mineral bodies of the same genetic type. Using the developed cost estimation models and the information from the US Geological Survey on mineral resources, the cumulative availability curves are plotted for primary gold deposits in the world. On this basis, the forecast rates of the increase in the mineable mineral resources are compared with the rates of the increment in the costs of their development, and the express-appraisal of economically available resources is done.

The work was carried out within the framework of the state task Institute of Chemistry and Chemical Technology SB RAS FWES-2021-0014 (registration number in EGISU 121031500206-5).

Ключевые слова Mineral resources, mineral resource availability, development probability, resource depletion, peak models, cumulative availability curve, gold
Библиографический список

1. An Appraisal of Minerals Availability for 34 Commodities. United States : Department of the Interior, Bureau of Mines, 1987. 692 p.
2. Pleshkov A. A., Matsko N. A. Availability of mineral resources. Moscow : Nauka, 2004. 321 p.
3. Meadows D. H., Meadows D. L., Randers J. et al. The limits to growth: A report for the club of Rome’s project on the predicament of mankind. New York : Universe Books, 1972.
4. Prior T., Giurco D., Mudd G., Mason L., Behrisch J. Resource depletion, peak minerals and the implications for sustainable resource management. Global Environmental Change. 2012. Vol. 22, Iss. 3. рр. 577–587.
5. Ali S. H., Giurco D., Arndt N., Nickless E., Brown G. et al. Mineral supply for sustainable development requires resource governance. Nature. 2017. Vol. 543(7645). рр. 367–372.
6. Northey S., Mohr S., Mudd G. M., Weng Z., Giurco D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources, Conservation and Recycling. 2014. Vol. 83. pр. 190–201.
7. Calvo G., Valero A., Valero A. Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resources, Conservation and Recycling. 2017. Vol. 125. рр. 208–217.
8. Chapman I. The end of Peak Oil? Why this topic is still relevant despite recent denials. Energy Policy. 2014. Vol. 64. рр. 93–101.
9. Hubbert M. K. Nuclear Energy and Fossil Fuels 95. Shell Development Company. 1956. No. 95. pp. 1–40.
10. Hubbert M. K. Energy Resources: A Report to the Committee on Natural Resources. Washington, DC : National Academy of Sciences, 1962. 153 p.
11. Campbell C. J., Laherrere J. F. The end of cheap oil. Scientific American March. 1998. pp. 80–86
12. Egorova I. V., Lapteva A. M. Forecast for mineral production and mineral resource sufficiency for global economy. Ores and metalls. 2019. No. 3. pp. 4–11.
13. Tilton J. E., Lagos G. Assessing the long-run availability of copper. Resources Policy. 2007. Vol. 32, Iss. 1–2. рр. 19-23.
14. Ugo Bardi. Peak oil, 20 years later: Failed prediction or useful insight? Energy Research and Social Science. 2019. Vol. 48. рр. 257–261.
15. Tilton J. E. The Hubbert peak model and assessing the threat of mineral depletion. Resources, Conservation and Recycling. 2018. Vol. 139. рр. 280–286.
16. Kharitonov V. V., Ulyanin Yu. A., Sliva D. E. Analytical modeling of depletion dynamics of traditional nonrenewable energy sources. Vestnik NIYaU MIPHI. 2019. Vol. 8, No. 4. pp. 370–379.
17. Ivanov V. V., Kryanev A. V., Sliva D. E., Kharitonov V. V., Ulyanin Y. A. Mathematical modeling of exhaustion process of extracted mineral resources using the example of natural uranium. Physics of Particles and Nuclei Letters. 2020. Vol. 17, No. 2. pp. 250–252.
18. Tilton J. E., Guzman J. I. Mineral Economics and Policy. New York : Routledge, 2016. 270 p.
19. Tilton J. E., Crowson Ph. C. F., DeYoung J. H., et al. Public policy and future mineral supplies. Resources Policy. 2018. Vol. 57. рр. 55–60.
20. Leskov M. I., Baushev S. S., Dudnik A. V. Expenses of gold mining companies in Russia in 2020. Zoloto i tekhnologii. 2021. No. 1(51). pp. 14–17.
21. Yaksic A., Tilton J. E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy. 2009. Vol. 34, No. 4. рр. 185–194.
22. Jordan B. W., Eggert R. G., Dixon B. W., et al. Thorium: Crustal abundance, joint production, and economic availability. Resources Policy. 2015. Vol. 44, No. 4. рр. 81–93.
23. Jasiński D., Meredith J., Kirwan K. The life cycle impact for platinum group metals and lithium to 2070 via surplus cost potential. The International Journal of Life Cycle Assessment. 2018. Vol. 23. рp. 773–786.
24. Drozhkina L. A. Prediction of gold outputs in producing countries up to 2030. Zoloto i tekhnologii. 2019. No. 3(45). pp. 30–33.
25. Egorova I. V. Production capabilities of the subsoil. Moscow : FGBU VIMS, 2019. 544 p.
26. Robinson G. R., Menzie W. D. Economic Filters for Evaluating Porphyry Copper Deposit Resource Assessments Using Grade-Tonnage Deposit Models, with Examples from the U.S. Geological Survey Global Mineral Resource Assessment. Reston, VA : U.S. Geological Survey, 2014. 21 Р.
27. Сox D. P., Singer D. A. Mineral Deposit models. United States : Geological Survey Bulletin 1693, 1986. 379 p.
28. Singer D. A., Menzie W. D. Quantitative mineral resource assessments. An Integrated Approach. United States : Oxford University Press, 2010. 219 p.
29. Crowson Ph. Inside mining. London : Mining Journal Books, 1998. 230 p.
30. Peshkov A. A., Matsko N. A., Kharitonova M. Yu. Probabilistic models of availability modeling of mineral resources. GIAB. 2010. Vol. 1, No. 12. pp. 265–282.
31. Kharitonova M., Mikhailov A., Matsko N. Influence of the time factor on the availability of deposits of nonferrous metals. Resources Policy. 2013. Vol. 38, No. 4. рр. 490–495.

Полный текст статьи Modeling cumulative availability curve of gold resources