ArticleName |
Modeling cumulative availability curve of gold resources |
ArticleAuthorData |
Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia:
Kharitonova M. Yu., Senior Researcher, Candidate of Engineering Sciences, ritau@icct.ru
Federal Research Center for Computer Science and Control, Russian Academy of Sciences, Moscow, Russia:
Matsko N. A., Leading Researcher, Doctor of Engineering Sciences |
References |
1. An Appraisal of Minerals Availability for 34 Commodities. United States : Department of the Interior, Bureau of Mines, 1987. 692 p. 2. Pleshkov A. A., Matsko N. A. Availability of mineral resources. Moscow : Nauka, 2004. 321 p. 3. Meadows D. H., Meadows D. L., Randers J. et al. The limits to growth: A report for the club of Rome’s project on the predicament of mankind. New York : Universe Books, 1972. 4. Prior T., Giurco D., Mudd G., Mason L., Behrisch J. Resource depletion, peak minerals and the implications for sustainable resource management. Global Environmental Change. 2012. Vol. 22, Iss. 3. рр. 577–587. 5. Ali S. H., Giurco D., Arndt N., Nickless E., Brown G. et al. Mineral supply for sustainable development requires resource governance. Nature. 2017. Vol. 543(7645). рр. 367–372. 6. Northey S., Mohr S., Mudd G. M., Weng Z., Giurco D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources, Conservation and Recycling. 2014. Vol. 83. pр. 190–201. 7. Calvo G., Valero A., Valero A. Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resources, Conservation and Recycling. 2017. Vol. 125. рр. 208–217. 8. Chapman I. The end of Peak Oil? Why this topic is still relevant despite recent denials. Energy Policy. 2014. Vol. 64. рр. 93–101. 9. Hubbert M. K. Nuclear Energy and Fossil Fuels 95. Shell Development Company. 1956. No. 95. pp. 1–40. 10. Hubbert M. K. Energy Resources: A Report to the Committee on Natural Resources. Washington, DC : National Academy of Sciences, 1962. 153 p. 11. Campbell C. J., Laherrere J. F. The end of cheap oil. Scientific American March. 1998. pp. 80–86 12. Egorova I. V., Lapteva A. M. Forecast for mineral production and mineral resource sufficiency for global economy. Ores and metalls. 2019. No. 3. pp. 4–11. 13. Tilton J. E., Lagos G. Assessing the long-run availability of copper. Resources Policy. 2007. Vol. 32, Iss. 1–2. рр. 19-23. 14. Ugo Bardi. Peak oil, 20 years later: Failed prediction or useful insight? Energy Research and Social Science. 2019. Vol. 48. рр. 257–261. 15. Tilton J. E. The Hubbert peak model and assessing the threat of mineral depletion. Resources, Conservation and Recycling. 2018. Vol. 139. рр. 280–286. 16. Kharitonov V. V., Ulyanin Yu. A., Sliva D. E. Analytical modeling of depletion dynamics of traditional nonrenewable energy sources. Vestnik NIYaU MIPHI. 2019. Vol. 8, No. 4. pp. 370–379. 17. Ivanov V. V., Kryanev A. V., Sliva D. E., Kharitonov V. V., Ulyanin Y. A. Mathematical modeling of exhaustion process of extracted mineral resources using the example of natural uranium. Physics of Particles and Nuclei Letters. 2020. Vol. 17, No. 2. pp. 250–252. 18. Tilton J. E., Guzman J. I. Mineral Economics and Policy. New York : Routledge, 2016. 270 p. 19. Tilton J. E., Crowson Ph. C. F., DeYoung J. H., et al. Public policy and future mineral supplies. Resources Policy. 2018. Vol. 57. рр. 55–60. 20. Leskov M. I., Baushev S. S., Dudnik A. V. Expenses of gold mining companies in Russia in 2020. Zoloto i tekhnologii. 2021. No. 1(51). pp. 14–17. 21. Yaksic A., Tilton J. E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy. 2009. Vol. 34, No. 4. рр. 185–194. 22. Jordan B. W., Eggert R. G., Dixon B. W., et al. Thorium: Crustal abundance, joint production, and economic availability. Resources Policy. 2015. Vol. 44, No. 4. рр. 81–93. 23. Jasiński D., Meredith J., Kirwan K. The life cycle impact for platinum group metals and lithium to 2070 via surplus cost potential. The International Journal of Life Cycle Assessment. 2018. Vol. 23. рp. 773–786. 24. Drozhkina L. A. Prediction of gold outputs in producing countries up to 2030. Zoloto i tekhnologii. 2019. No. 3(45). pp. 30–33. 25. Egorova I. V. Production capabilities of the subsoil. Moscow : FGBU VIMS, 2019. 544 p. 26. Robinson G. R., Menzie W. D. Economic Filters for Evaluating Porphyry Copper Deposit Resource Assessments Using Grade-Tonnage Deposit Models, with Examples from the U.S. Geological Survey Global Mineral Resource Assessment. Reston, VA : U.S. Geological Survey, 2014. 21 Р. 27. Сox D. P., Singer D. A. Mineral Deposit models. United States : Geological Survey Bulletin 1693, 1986. 379 p. 28. Singer D. A., Menzie W. D. Quantitative mineral resource assessments. An Integrated Approach. United States : Oxford University Press, 2010. 219 p. 29. Crowson Ph. Inside mining. London : Mining Journal Books, 1998. 230 p. 30. Peshkov A. A., Matsko N. A., Kharitonova M. Yu. Probabilistic models of availability modeling of mineral resources. GIAB. 2010. Vol. 1, No. 12. pp. 265–282. 31. Kharitonova M., Mikhailov A., Matsko N. Influence of the time factor on the availability of deposits of nonferrous metals. Resources Policy. 2013. Vol. 38, No. 4. рр. 490–495. |